Ultra-low dark count rate and high system efficiency single-photon detectors with 50 nm-wide superconducting wires

被引:22
作者
Zhang, L. [1 ]
Kang, L. [1 ]
Chen, J. [1 ]
Zhong, Y. [1 ]
Zhao, Q. [1 ]
Jia, T. [1 ]
Cao, C. [1 ]
Jin, B. [1 ]
Xu, W. [1 ]
Sun, G. [1 ]
Wu, P. [1 ]
机构
[1] Nanjing Univ, RISE, Nanjing 210093, Peoples R China
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2011年 / 102卷 / 04期
基金
中国国家自然科学基金;
关键词
QUANTUM KEY DISTRIBUTION; UP-CONVERSION; NBN; WAVELENGTHS;
D O I
10.1007/s00340-010-4234-0
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Both system detection efficiency (DE) and dark count rate (DCR) are critical parameters of single-photon detectors for practical applications. For a superconducting nanowire single-photon detector (SNSPD), DE is always achieved with high bias current, which also produces high dark count rate. In this paper, we analyzed the DE of SNSPD with 50 nm NbN nanowires patterned on the films with a thickness of 4 and 6 nm. The maximum DE for communication wavelengths is 10.3% at 1310 nm with a 50 nm-wide and 4 nm-thick device. The chip with 6 nm thickness shows high DE at ultra-low dark count rate. For example, DEs of 32% for 404 nm photons and 21% for 660 nm photons were achieved at a low dark count rate of 0.01 Hz. Comparing with the SNSPD with 4 nm-thick films, the improved DE for visible photons with the 6 nm-thick SNSPD is caused by the increased absorbance of NbN films, which also reduced the dark count rate produced by thermal activation around film defects. By optimizing the micro-fabrication process and further decreasing the nanowire width while retaining uniformity, the wavelength response of the 6 nm-thick SNSPD may be extended to infrared photons.
引用
收藏
页码:867 / 871
页数:5
相关论文
共 22 条
[1]   Efficient single-photon counting at 1.55 μm by means of frequency upconversion [J].
Albota, MA ;
Wong, FNC .
OPTICS LETTERS, 2004, 29 (13) :1449-1451
[2]   Evolution and prospects for single-photon avalanche diodes and quenching circuits [J].
Cova, S ;
Ghioni, M ;
Lotito, A ;
Rech, I ;
Zappa, F .
JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) :1267-1288
[3]   Visible fluorescence spectroscopy of single proteins at liquid-helium temperature [J].
Fujiyoshi, Satoru ;
Fujiwara, Masanori ;
Matsushita, Michio .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[4]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[5]   Quantum key distribution at 1550 nm with twin superconducting single-photon detectors [J].
Hadfield, Robert H. ;
Habif, Jonathan L. ;
Schlafer, John ;
Schwall, Robert E. ;
Nam, Sae Woo .
APPLIED PHYSICS LETTERS, 2006, 89 (24)
[6]   Single-photon detectors for optical quantum information applications [J].
Hadfield, Robert H. .
NATURE PHOTONICS, 2009, 3 (12) :696-705
[7]   Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors [J].
Hadfield, Robert H. ;
Stevens, Martin J. ;
Mirin, Richard P. ;
Nam, Sae Woo .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (10)
[8]   InGaAs-on-Si single photon avalanche photodetectors [J].
Kang, Y ;
Lo, YH ;
Bitter, M ;
Kristjansson, S ;
Pan, Z ;
Pauchard, A .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1668-1670
[9]   Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared [J].
Korneev, A ;
Matvienko, V ;
Minaeva, O ;
Milostnaya, I ;
Rubtsova, I ;
Chulkova, G ;
Smirnov, K ;
Voronov, V ;
Gol'tsman, G ;
Slysz, W ;
Pearlman, A ;
Verevkin, A ;
Sobolewski, R .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :571-574
[10]   Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides [J].
Langrock, C ;
Diamanti, E ;
Roussev, RV ;
Yamamoto, Y ;
Fejer, MM ;
Takesue, H .
OPTICS LETTERS, 2005, 30 (13) :1725-1727