Calabi flow in Riemann surfaces revisited: A new point of view

被引:48
作者
Chen, XX [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1155/S1073792801000149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:275 / 297
页数:23
相关论文
共 20 条
[1]  
Bando S., 1987, Adv. Stud. Pure Math., V10, P11
[2]  
CALABI E, 1982, ANN MATH STUD, P259
[3]  
CALABI E, UNPUB J DIFFERENTIAL
[4]   EXTREMAL METRICS OF ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
CHANG, SYA ;
YANG, PC .
ANNALS OF MATHEMATICS, 1995, 142 (01) :171-212
[5]   The zeta functional determinants on manifolds with boundary .2. Extremal metrics and compactness of isospectral set [J].
Chang, SYA ;
Qing, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (02) :363-399
[6]  
CHEN XF, IN PRESS J DIFFERENT
[7]   Extremal Hermitian metrics on Riemann surfaces [J].
Chen, XX .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (03) :191-232
[8]   Extremal hermitian metrics on Riemannian surfaces [J].
Chen, XX .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (15) :781-797
[9]   Weak limits of Riemannian metrics in surfaces with integral curvature bound [J].
Chen, XX .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1998, 6 (03) :189-226
[10]  
CHEN XX, 1994, THESIS U PENNSYLVANI