Biquandle cohomology and state-sum invariants of links and surface-links

被引:3
|
作者
Kamada, Seiichi [1 ]
Kawauchi, Akio [2 ]
Kim, Jieon [3 ]
Lee, Sang Youl [3 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
[2] Osaka City Univ, Adv Math Inst, Sumiyoshi Ku, Osaka 5588585, Japan
[3] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Link; surface-link; marked graph diagram; biquandle cocycle invariant; shadow biquandle cocycle invariant; MARKED GRAPH DIAGRAMS; GENERATING SETS; HOMOLOGY; QUANDLE; 4-SPACE; KNOTS; MOVES;
D O I
10.1142/S0218216518430162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the (co)homology theory of biquandles, derived biquandle cocycle invariants for oriented surface-links using broken surface diagrams and how to compute the biquandle cocycle invariants from marked graph diagrams. We also develop the shadow (co)homology theory of biquandles and construct the shadow biquandle cocycle invariants for oriented surface-links.
引用
收藏
页数:37
相关论文
共 50 条