In this paper, we discuss the (co)homology theory of biquandles, derived biquandle cocycle invariants for oriented surface-links using broken surface diagrams and how to compute the biquandle cocycle invariants from marked graph diagrams. We also develop the shadow (co)homology theory of biquandles and construct the shadow biquandle cocycle invariants for oriented surface-links.
机构:
Pusan Natl Univ, Dept Math, Busan 46241, South Korea
Claremont Mckenna Coll, Dept Math Sci, 850 Columbia Ave, Claremont, CA 91711 USAPusan Natl Univ, Dept Math, Busan 46241, South Korea
Kim, Jieon
Nelson, Sam
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Dept Math, Busan 46241, South Korea
Claremont Mckenna Coll, Dept Math Sci, 850 Columbia Ave, Claremont, CA 91711 USAPusan Natl Univ, Dept Math, Busan 46241, South Korea
Nelson, Sam
Seo, Minju
论文数: 0引用数: 0
h-index: 0
机构:
Pusan Natl Univ, Dept Math, Busan 46241, South Korea
Claremont Mckenna Coll, Dept Math Sci, 850 Columbia Ave, Claremont, CA 91711 USAPusan Natl Univ, Dept Math, Busan 46241, South Korea