In this paper, we discuss the (co)homology theory of biquandles, derived biquandle cocycle invariants for oriented surface-links using broken surface diagrams and how to compute the biquandle cocycle invariants from marked graph diagrams. We also develop the shadow (co)homology theory of biquandles and construct the shadow biquandle cocycle invariants for oriented surface-links.
机构:
Michigan State Univ, Dept Math, C120 Wells Hall,619 Red Cedar Rd, E Lansing, MI 48824 USAMichigan State Univ, Dept Math, C120 Wells Hall,619 Red Cedar Rd, E Lansing, MI 48824 USA
Joung, Yewon
Nelson, Sam
论文数: 0引用数: 0
h-index: 0
机构:
Claremont Mckenna Coll, Dept Math Sci, 850 Columbia Ave, Claremont, CA 91711 USAMichigan State Univ, Dept Math, C120 Wells Hall,619 Red Cedar Rd, E Lansing, MI 48824 USA
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto 3-3-138, Osaka 5588585, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto 3-3-138, Osaka 5588585, Japan
Kamada, Seiichi
Kawamura, Kengo
论文数: 0引用数: 0
h-index: 0
机构:
Osaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto 3-3-138, Osaka 5588585, JapanOsaka City Univ, Dept Math, Sumiyoshi Ku, Sugimoto 3-3-138, Osaka 5588585, Japan