Mechanism of Catalytic Effect of Water Clusters on the Oxidation of Phosphine Gas

被引:0
作者
Li, Yuan [1 ]
Li, Kai [1 ]
Song, Xin [1 ]
Sun, Huaying [3 ]
Ning, Ping [1 ]
Sun, Xin [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Environm Sci & Engn, Kunming 650500, Yunnan, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Environm Pollut Control &, Guangzhou, Guangdong, Peoples R China
[3] Yunnan Inst Food & Drug Control, Guangzhou 650000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
phosphine oxidation; water clusters; catalytic effect; Density functional theory; mechanism; PLUS OH REACTION; YELLOW PHOSPHORUS; SULFUR-DIOXIDE; FORMIC-ACID; HYDROLYSIS; HYDRATION; DYNAMICS; MOLECULE; KINETICS; INSIGHT;
D O I
10.1134/S0036024419120367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism of PH3 oxidation is investigated at B3LYP/6-311+g (d, p) level using density functional theory calculation with n = 0-6 water molecules addition. The corresponding geometric structure, energy surface profile are studied to determine the catalytic effect of water clusters. The results show that addition of water clusters into the system will be beneficial for the oxidation reaction to different extent. Four water molecules addition is the most favorable mode as it lowers the reaction barrier from 29.04 kcal (0H(2)O) to 12.40 kcal/mol. The energy barrier follows the order: 0H(2)O > (H2O)(5) > (H2O)(2) > (H2O)(6) > (H2O)(3) > (H2O)(4). Natural bond orbital (NBO) analysis shows that four water molecules addition has the largest second order stabilization energy of LP (O1) (O1 in H2O) -> sigma*(P-H1) and LP (O2) (O2 in H2O) -> sigma*(O3-H2), which facilitates proton transfer and formation of P-OH bond. In addition, the reaction rate constants k(TS) are simulated from 293 to 433 K. The result shows that four water molecules addition has best catalytic effect thermodynamically and kinetically.
引用
收藏
页码:2373 / 2382
页数:10
相关论文
共 50 条
[21]   Mechanism of proton transport in water clusters and the effect of electric fields: A DFT study [J].
Vu, Nam H. ;
Dong, Hieu C. ;
Nguyen, My, V ;
Hoang, Dzung ;
Trinh, Thuat T. ;
Phan, Thang Bach .
CURRENT APPLIED PHYSICS, 2021, 25 :62-69
[22]   Oxidation mechanism of carbon black by NO2:: Effect of water vapour [J].
Jeguirim, M ;
Tschamber, V ;
Brilhac, JF ;
Ehrburger, P .
FUEL, 2005, 84 (14-15) :1949-1956
[23]   The oxidation of Al atoms embedded in water clusters: A dynamical study of the relay (Grotthuss-like) mechanism [J].
Alvarez-Barcia, S. ;
Flores, J. R. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (24)
[24]   Effect of feed gas composition on the rate of carbon oxidation with Pt/SiO2 and the oxidation mechanism [J].
Oi-Uchisawa, J ;
Obuchi, A ;
Ogata, A ;
Enomoto, R ;
Kushiyama, S .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1999, 21 (01) :9-17
[25]   Br2 dissociation in water clusters: the catalytic role of water [J].
J. J. Santoyo-Flores ;
A. Cedillo ;
M. I. Bernal-Uruchurtu .
Theoretical Chemistry Accounts, 2013, 132 (1)
[26]   Effect of nano-confinement on the structure and properties of water clusters: An ab initio study [J].
Tripathy, Manoj K. ;
Mahawar, Devendra K. ;
Chandrakumar, K. R. S. .
JOURNAL OF CHEMICAL SCIENCES, 2019, 132 (01)
[27]   Catalytic water oxidation based on Ag(I)-substituted Keggin polyoxotungstophosphate [J].
Cui, Ying ;
Shi, Lei ;
Yang, Yanyi ;
You, Wansheng ;
Zhang, Lancui ;
Zhu, Zaiming ;
Liu, Meiying ;
Sun, Licheng .
DALTON TRANSACTIONS, 2014, 43 (46) :17406-17415
[28]   Exploring the effect of confinement on water clusters in carbon nanotubes [J].
Liu, Jie ;
Feng, Li ;
Wang, Xinhua ;
Zhao, Maoshuang .
JOURNAL OF MOLECULAR MODELING, 2017, 23 (04)
[29]   Catalytic effect of copper(II) oxide on oxidation of cellulosic biomass [J].
Nakayama, Jo ;
Miyake, Atsumi .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2012, 110 (01) :321-327
[30]   Effect of catalytic reactions on soot feature evolutions in oxidation process [J].
Gao, Jianbing ;
Wang, Yufeng ;
Wang, Shanshan ;
Li, Xiaopan ;
Chang, Xiaoxue ;
Wang, Xiaochen ;
Yang, Ce ;
Xuan, Ranming .
CHEMICAL ENGINEERING JOURNAL, 2022, 443