On the transcendence of real numbers with a regular expansion

被引:9
作者
Adamczewski, B [1 ]
Cassaigne, J [1 ]
机构
[1] CNRS, UPR 9016, Math Inst, F-13288 Marseille 09, France
关键词
transcendence; coding of rotation; three-interval exchange;
D O I
10.1016/S0022-314X(03)00054-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the Ferenczi-Mauduit combinatorial condition obtained via a reformulation of Ridout's theorem to prove that a real number whose b-ary expansion is the coding of an irrational rotation on the circle with respect to a partition in two intervals is transcendental. We also prove the transcendence of real numbers whose b-ary expansion arises from a non-periodic three-interval exchange transformation. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 22 条
[1]  
Adamczewski Boris, 2002, J. Theor. Nombres Bordeaux, V14, P351
[2]   REMARKABLE CLASS OF CONTINUED FRACTIONS [J].
ADAMS, WW ;
DAVISON, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 65 (02) :194-198
[3]   Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms [J].
Allouche, JP ;
Zamboni, LQ .
JOURNAL OF NUMBER THEORY, 1998, 69 (01) :119-124
[4]  
ALLOUCHE JP, 2000, GAZETTE MATH, V84, P19
[5]  
[Anonymous], MATH ANN
[6]   About the Transcendence of certain dyadic Fractions. [J].
Boehmer, P. E. .
MATHEMATISCHE ANNALEN, 1927, 96 :367-377
[7]  
BOREL E, 1950, CR HEBD ACAD SCI, V230, P591
[8]  
Cassaigne J., 1998, DEV LANGUAGE THEORY, P211
[9]  
DANILOV L. V., 1972, Mat. Zametki, V12, P149
[10]   SERIES AND ITS ASSOCIATED CONTINUED FRACTION [J].
DAVISON, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 63 (01) :29-32