Mean field fracture in disordered solids: Statistics of fluctuations

被引:6
作者
da Rocha, Hudson Borja [1 ,2 ]
Truskinovsky, Lev [3 ]
机构
[1] Coll France, INSERM U1050, CIRB, CNRS UMR 7241, F-75005 Paris, France
[2] PSL Res Univ, F-75005 Paris, France
[3] PMMH, CNRS UMR 7636 PSL ESPCI, 10 Rue Vauquelin, F-75005 Paris, France
关键词
Fracture; Criticality; Brittle to ductile; Fluctuations; DUCTILE TRANSITION; FAILURE; MODELS; DAMAGE; LAWS; DISTRIBUTIONS; ELASTICITY; BREAKDOWN; DYNAMICS; ADHESION;
D O I
10.1016/j.jmps.2021.104646
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Power law distributed fluctuations are known to accompany terminal failure in disordered brittle solids. The associated intermittent scale-free behavior is of interest from the fundamental point of view as it emerges universally from an intricate interplay of threshold-type nonlinearity, quenched disorder, and long-range interactions. We use the simplest mean-field description of such systems to show that they can be expected to undergo a transition between brittle and quasi-brittle (ductile) responses. While the former is characterized by a power law distribution of avalanches, in the latter, the statistics of avalanches is predominantly Gaussian. The realization of a particular regime depends on the variance of disorder and the effective rigidity represented by a combination of elastic moduli. We argue that the robust criticality, as in the cases of earthquakes and collapsing porous materials, indicates the self-tuning of the system towards the boundary separating brittle and ductile regimes.
引用
收藏
页数:20
相关论文
共 90 条
  • [1] Statistical models of fracture
    Alava, Mikko J.
    Nukalaz, Phani K. V. V.
    Zapperi, Stefano
    [J]. ADVANCES IN PHYSICS, 2006, 55 (3-4) : 349 - 476
  • [2] [Anonymous], 2014, STAT MODELS FRACTURE
  • [3] Same universality class for the critical behavior in and out of equilibrium in a quenched random field
    Balog, Ivan
    Tissier, Matthieu
    Tarjus, Gilles
    [J]. PHYSICAL REVIEW B, 2014, 89 (10)
  • [4] Experimental Evidence of Accelerated Seismic Release without Critical Failure in Acoustic Emissions of Compressed Nanoporous Materials
    Baro, Jordi
    Dahmen, Karin A.
    Davidsen, Jorn
    Planes, Antoni
    Castillo, Pedro O.
    Nataf, Guillaume F.
    Salje, Ekhard K. H.
    Vives, Eduard
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (24)
  • [5] Analysis of power-law exponents by maximum-likelihood maps
    Baro, Jordi
    Vives, Eduard
    [J]. PHYSICAL REVIEW E, 2012, 85 (06):
  • [6] Bazant Z.P., 2017, PROBABILISTIC MECH Q
  • [7] Design of quasibrittle materials and structures to optimize strength and scaling at probability tail: an apercu
    Bazant, Zdenek P.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2224):
  • [8] BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
  • [9] Berthier E., 2022, J MECH PHYS SOLIDS, V162
  • [10] Rigidity percolation control of the brittle-ductile transition in disordered networks
    Berthier, Estelle
    Kollmer, Jonathan E.
    Henkes, Silke E.
    Liu, Kuang
    Schwarz, J. M.
    Daniels, Karen E.
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (07):