Learning-Based Artifact Removal via Image Decomposition for Low-Dose CT Image Processing

被引:27
作者
Cui, Xue-Ying [1 ,2 ]
Gui, Zhi-Guo [2 ]
Zhang, Quan [2 ]
Shangguan, Hong [2 ]
Wang, An-Hong [3 ]
机构
[1] Taiyuan Univ Sci & Technol, Inst Appl Sci, Taiyuan 030024, Peoples R China
[2] North Univ China, Natl Key Lab Elect Measurement Technol, Taiyuan 030051, Peoples R China
[3] Taiyuan Univ Sci & Technol, Inst Elect & Informat Engn, Taiyuan 030024, Peoples R China
关键词
Artifact removal; dictionary learning; image decomposition; low-dose CT; sparse representation; SINOGRAM NOISE-REDUCTION; COMPUTED-TOMOGRAPHY; ANISOTROPIC DIFFUSION; SPARSE; RECONSTRUCTION; REPRESENTATIONS; ALGORITHM;
D O I
10.1109/TNS.2016.2565604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Streak artifacts and mottle noise often appear in low-dose CT (LDCT) images due to excessive quantum noise in low-dose X-ray imaging process, thus degrading CT image quality. This research is aimed at improving the quality of LDCT images via image decomposition and dictionary learning. The proposed method first decomposes a LDCT image into the low-frequency (LF) and high-frequency (HF) parts by a bilateral filter. The HF part is then decomposed into an artifact component and a tissue component by performing dictionary learning (DL) and sparse coding. The tissue component is combined with the LF part to obtain the artifact-suppressed image. At last, a DL method is applied to further reduce the residual artifacts and noise. Different from previous research works with sparse representation, the proposed method does not need to collect training images in advance. The results of numerical simulation and clinical data experiments indicate the effectiveness of the proposed approach.
引用
收藏
页码:1860 / 1873
页数:14
相关论文
共 39 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Morphological component analysis: An adaptive thresholding strategy [J].
Bobin, Jerome ;
Starck, Jean-Luc ;
Fadili, Jalal M. ;
Moudden, Yassir ;
Donoho, David L. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (11) :2675-2681
[3]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]   Nonlocal prior Bayesian tomographic reconstruction [J].
Chen, Yang ;
Ma, Jianhua ;
Feng, Qianjin ;
Luo, Limin ;
Shi, Pengcheng ;
Chen, Wufan .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2008, 30 (02) :133-146
[6]   Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing [J].
Chen, Yang ;
Shi, Luyao ;
Feng, Qianjing ;
Yang, Jian ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Chen, Wufan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2271-2292
[7]   Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing [J].
Chen, Yang ;
Yin, Xindao ;
Shi, Luyao ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5803-5820
[8]   Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means [J].
Chen, Yang ;
Yang, Zhou ;
Hu, Yining ;
Yang, Guanyu ;
Zhu, Yongcheng ;
Li, Yinsheng ;
Luo, Limin ;
Chen, Wufan ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (09) :2667-2688
[9]   Improving low-dose abdominal CT images by Weighted Intensity Averaging over Large-scale Neighborhoods [J].
Chen, Yang ;
Chen, Wufan ;
Yin, Xindao ;
Ye, Xianghua ;
Bao, Xudong ;
Luo, Limin ;
Feng, Qianjing ;
Li, Yinsheng ;
Yu, Xiaoe .
EUROPEAN JOURNAL OF RADIOLOGY, 2011, 80 (02) :E42-E49
[10]   Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior [J].
Chen, Yang ;
Gao, Dazhi ;
Nie, Cong ;
Luo, Limin ;
Chen, Wufan ;
Yin, Xindao ;
Lin, Yazhong .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (07) :495-500