Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes

被引:133
|
作者
Nakayama, Masanobu [1 ,2 ]
Wada, Shinta [1 ]
Kuroki, Shigeki [3 ]
Nogami, Masayuki [4 ]
机构
[1] Tokyo Inst Technol, Dept Appl Chem, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528552, Japan
[2] Nagoya Inst Technol, Dept Mat Sci & Engn, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
[3] Tokyo Inst Technol, Dept Organ & Polymer Mat, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528552, Japan
[4] Nagoya Inst Technol, Dept Frontier Mat, Grad Sch Engn, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
PEG-BORATE/ALUMINATE ESTER; SECONDARY BATTERIES; IONIC-CONDUCTIVITY; BORATE ESTER; HIGH-VOLTAGE; PERFORMANCE; FABRICATION; MECHANISM; PLASTICIZER; CORROSION;
D O I
10.1039/c0ee00266f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the electrochemical properties and performances of all-solid-state lithium polymer batteries (LPBs) using standard PEO-based solid-state polymer electrolytes (SPEs) are reported and discussed. The assembled cell showed stable charge-discharge cycles (>150 cycles) at 30 degrees C. This is due to desirable solid electrolyte interface (SEI) film formation at the SPE|cathode interface at the first cycle indicated by activation energy measurements for interfacial Li ion exchange reaction. However, sudden capacity fading for prolonged electrochemical cycles was indicated by an accelerated aging test at higher current density (1 C) and temperature conditions (60 degrees C), accompanied by an increase of electrochemical polarization. This degradation phenomenon may be fatal for practical usage of large-scale batteries which requires extremely long-time durability. Two sequential factors affecting the capacity fading are proposed through the studies of in situ (19)F-NMR imaging, real-time monitoring of the total cell thickness, and electrochemical measurements such as AC impedance. One factor is degradation of the cathode sheet or cathode composite assembly, owing to cyclic volumetric change from the two-phase LiFePO(4)-FePO(4) reaction. Such degradation leads to uneven electric contact at the electrode|electrolyte interface, thereby enhancing local electrochemical polarization. The second factor, namely, Li salt decomposition, is triggered by this local polarization, giving rise to the continuous capacity fading and the increase of polarization. This degradation scenario can be general enough to include the full range of all-solid-state LPB devices, since the trigger of degradation owes to non-fluidity of solid|solid contact, or solid electrolytes cannot immerse into the cavities caused by pulverization of cathode particles unlike liquid electrolytes. On the basis of these results, we attempted to improve the mechanical properties of the binder materials of cathode sheets, and demonstrated improved cyclic durability.
引用
收藏
页码:1995 / 2002
页数:8
相关论文
共 50 条
  • [21] Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries
    Li, Liansheng
    Deng, Yuanfu
    Chen, Guohua
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 : 154 - 177
  • [22] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [23] Solid polymer electrolytes in all-solid-state lithium metal batteries: From microstructures to properties
    Lin, Zongxi
    Sheng, Ouwei
    Cai, Xiaohan
    Duan, Dan
    Yue, Ke
    Nai, Jianwei
    Wang, Yao
    Liu, Tiefeng
    Tao, Xinyong
    Liu, Yujing
    JOURNAL OF ENERGY CHEMISTRY, 2023, 81 : 358 - 378
  • [24] Solid polymer electrolytes in all-solid-state lithium metal batteries:From microstructures to properties
    Zongxi Lin
    Ouwei Sheng
    Xiaohan Cai
    Dan Duan
    Ke Yue
    Jianwei Nai
    Yao Wang
    Tiefeng Liu
    Xinyong Tao
    Yujing Liu
    Journal of Energy Chemistry, 2023, 81 (06) : 358 - 378
  • [25] Decoupling the Modulus and Toughness Effects of Solid Polymer Electrolytes in All-Solid-State Lithium Batteries
    Zheng, Yongwei
    Li, Xiaowei
    Fullerton, William R.
    Li, Christopher Y.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14093 - 14101
  • [26] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Qingjiang Yu
    Kecheng Jiang
    Cuiling Yu
    Xianjin Chen
    Chuanjian Zhang
    Yi Yao
    Bin Jiang
    Huijin Long
    ChineseChemicalLetters, 2021, 32 (09) : 2659 - 2678
  • [27] Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries
    Angulakhsmi, Natarajan
    Ambrose, Bebin
    Sathya, Swamickan
    Kathiresan, Murugavel
    Lingua, Gabriele
    Ferrari, Stefania
    Gowd, Erathimmanna Bhoje
    Wang, Wenyang
    Shen, Cai
    Elia, Giuseppe Antonio
    Gerbaldi, Claudio
    Stephan, Arul Manuel
    ACS MATERIALS AU, 2023, 3 (05): : 528 - 539
  • [28] Understanding the Positive Effect of LATP in Polymer Electrolytes in All-Solid-State Lithium Batteries
    Breuer, Ortal
    Peta, Gayathri
    Elias, Yuval
    Alon-Yehezkel, Hadas
    Weng, Yu-Ting
    Fayena-Greenstein, Miryam
    Wu, Nae-Lih
    Levi, Mikhael D.
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [29] Defective MOF-supported Poly(ethylene oxide) composite polymer electrolytes for high-performance all-solid-state lithium ion batteries
    Luo, Han
    Wu, Daohuan
    Liang, Jinlan
    Zou, Haifeng
    Zhuang, Jinliang
    Chen, Zhuo
    Cheng, Hu
    ELECTROCHIMICA ACTA, 2025, 513
  • [30] Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries
    Yi Zhang
    Wei Feng
    Yichao Zhen
    Peiyao Zhao
    Xiaohui Wang
    Longtu Li
    Ionics, 2022, 28 : 2751 - 2758