On Abelian Rings

被引:4
作者
Agayev, Nazim [1 ]
Harmanci, Abdullah [2 ]
Halicioglu, Sait [3 ]
机构
[1] European Univ Lefke, Dept Comp Engn, Gemikonagi Lefke 10, Mersin, New Zealand
[2] Hacettepe Univ, Dept Math, TR-06550 Ankara, Turkey
[3] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
alpha-reduced rings; alpha-symmetric rings; alpha-semicommutative rings; alpha-Armendariz rings; alpha-abelian rings; ARMENDARIZ RINGS; EXTENSIONS; BAER;
D O I
10.3906/mat-0711-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha be an endomorphism of an arbitrary ring R with identity In this note, we introduce the notion of alpha-abelian rings which generalizes abelian rings We prove that alpha-reduced rings, alpha-symmetric rings, alpha-semicommutative rings and alpha-Armendariz rings are alpha-abelian For a right principally projective ring R, we also prove that R is alpha-reduced if and only if R is alpha-symmetric if and only if R is alpha-semicommutative if and only if R is alpha-Armendariz if and only if R is alpha-Armendariz of power series type if and only if R is alpha-abelian
引用
收藏
页码:465 / 474
页数:10
相关论文
共 12 条
[1]  
Agayev N, 2007, KYUNGPOOK MATH J, V47, P21
[2]   Polynomial extensions of Baer and quasi-Baer rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (01) :25-42
[3]  
Buhpang A.M., 2002, Arab J. Mathematical Sciences, V18, P53
[4]  
CLARK EW, 1967, DUKE MATH J, V34, P417
[5]   Ore extensions of Baer and p.p.-rings [J].
Hong, CY ;
Kim, NK ;
Kwak, TK .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (03) :215-226
[6]   On skew Armendariz rings [J].
Hong, CY ;
Kim, NK ;
Kwak, TK .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) :103-122
[7]   Armendariz rings and semicommutative rings [J].
Huh, C ;
Lee, Y ;
Smoktunowicz, A .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (02) :751-761
[8]  
KAPLANSKY I, 1965, MATH LECT NOTE SERIE
[9]   Armendariz rings and reduced rings [J].
Kim, NK ;
Lee, Y .
JOURNAL OF ALGEBRA, 2000, 223 (02) :477-488
[10]   REPRESENTATION OF MODULES BY SHEAVES OF FACTOR MODULES [J].
LAMBEK, J .
CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (03) :359-&