Uniform-in-Time Continuum Limit of the Winfree Model on an Infinite Cylinder and Emergent Dynamics

被引:4
作者
Ha, Seung-Yeal [1 ,2 ,3 ]
Kang, Myeongju [1 ]
Moon, Bora [2 ,4 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Korea Inst Adv Study, Hoegiro 85, Seoul 02455, South Korea
[4] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
continuum limit; Winfree model on an infinite cylinder; well-posedness; stability analysis; stationary solution; PHASE-LOCKED STATES; NONLINEAR HEAT-EQUATION; KURAMOTO MODEL; SYNCHRONIZATION; STABILITY; OSCILLATORS; NETWORKS; BEHAVIOR;
D O I
10.1137/20M1355033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a uniform-in-time continuum limit of the lattice Winfree model (LWM) on an inifinite cylinder under restricted initial datum and suitable assumptions on system functions such as natural frequency functions and the coupling strength function. Roughly speaking, the continuum Winfree model (CWM) is an integro-differential equation for the temporal evolution of a Winfree phase field over an infinite cylinder. For bounded measurable initial phase field and natural frequency functions, we can establish a unique global existence of classical solutions to the CWM in a large coupling regime. At the same time, we can also see that a classical solution to the CWM can be obtained as an L-1 -limit of a sequence of lattice solutions to the LWM under a suitable framework. This provides a good approximation of solution to the CWM as a sequence of solutions to the LWM. Moreover, we verify that the continuum limit of a sequence of equilibria to the LWM tends to a unique stationary profile of the CWM.
引用
收藏
页码:1104 / 1134
页数:31
相关论文
共 54 条
[1]   Chimera states in a ring of nonlocally coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (01) :21-37
[2]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[3]   Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives [J].
Albi, G. ;
Bellomo, N. ;
Fermo, L. ;
Ha, S. -Y. ;
Kim, J. ;
Pareschi, L. ;
Poyato, D. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (10) :1901-2005
[4]   Phase diagram for the Winfree model of coupled nonlinear oscillators [J].
Ariaratnam, JT ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4278-4281
[5]   Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study [J].
Ballerini, M. ;
Calbibbo, N. ;
Candeleir, R. ;
Cavagna, A. ;
Cisbani, E. ;
Giardina, I. ;
Lecomte, V. ;
Orlandi, A. ;
Parisi, G. ;
Procaccini, A. ;
Viale, M. ;
Zdravkovic, V. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (04) :1232-1237
[6]   Traveling waves and the processing of weakly tuned inputs in a cortical network module [J].
BenYishai, R ;
Hansel, D ;
Sompolinsky, H .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1997, 4 (01) :57-77
[7]   BIOLOGY OF SYNCHRONOUS FLASHING OF FIREFLIES [J].
BUCK, J ;
BUCK, E .
NATURE, 1966, 211 (5049) :562-&
[8]   Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model [J].
Choi, Young-Pil ;
Ha, Seung-Yeal ;
Jung, Sungeun ;
Kim, Yongduck .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) :735-754
[9]   On Exponential Synchronization of Kuramoto Oscillators [J].
Chopra, Nikhil ;
Spong, Mark W. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :353-357
[10]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862