Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa

被引:37
|
作者
Remans, Kim [1 ]
Vercammen, Ken [1 ]
Bodilis, Josselin [2 ]
Cornelis, Pierre [1 ]
机构
[1] Vrije Univ Brussel VIB, Dept Mol & Cell Interact, B-1050 Brussels, Belgium
[2] Univ Rouen, UFR Sci, UMR CNRS 6143, Lab M2C,Grp Microbiol, F-76821 Mont St Aignan, France
来源
MICROBIOLOGY-SGM | 2010年 / 156卷
关键词
PEPTIDOGLYCAN-ASSOCIATED LIPOPROTEIN; OUTER-MEMBRANE LIPOPROTEIN; EFFLUX PUMP; ESCHERICHIA-COLI; MICROARRAY ANALYSIS; MOLECULAR-CLONING; BIOFILM FORMATION; FUSION PROTEINS; CELL-ENVELOPE; GENE;
D O I
10.1099/mic.0.040659-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other Pseudomonas species, P. aeruginosa has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LoICDEAB system, while those having an avoidance signal remain in the inner membrane. In Escherichia coli, the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in P. aeruginosa the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in P. aeruginosa, with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20%. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 Pseudomonas genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in P. aeruginosa.
引用
收藏
页码:2597 / 2607
页数:11
相关论文
共 50 条
  • [1] Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces
    Karash, Sardar
    Yahr, Timothy L.
    MSYSTEMS, 2022, 7 (03)
  • [2] Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa
    Gomez-Lozano, Maria
    Marvig, Rasmus Lykke
    Molin, Soren
    Long, Katherine S.
    ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (08) : 2006 - 2016
  • [3] Genome-Wide Mapping Reveals Complex Regulatory Activities of BfmR in Pseudomonas aeruginosa
    Fan, Ke
    Cao, Qiao
    Lan, Lefu
    MICROORGANISMS, 2021, 9 (03) : 1 - 22
  • [4] Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN
    Romero, Manuel
    Silistre, Hazel
    Lovelock, Laura
    Wright, Victoria J.
    Chan, Kok-Gan
    Hong, Kar-Wai
    Williams, Paul
    Camara, Miguel
    Heeb, Stephan
    NUCLEIC ACIDS RESEARCH, 2018, 46 (13) : 6823 - 6840
  • [5] Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa
    Janet-Maitre, Manon
    Pont, Stephane
    Masson, Frerich M.
    Sleiman, Serena
    Trouillon, Julian W.
    Robert-Genthon, Mylene
    Gallet, Benoit
    Dumestre-Perard, Chantal
    Elsen, Sylvie
    Moriscot, Christine
    Bardoel, Bart W.
    Rooijakkers, Suzan H. M.
    Cretin, Francois
    Attree, Ina
    PLOS PATHOGENS, 2023, 19 (01)
  • [6] Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa
    Wei, Qing
    Tarighi, Saeed
    Doetsch, Andreas
    Haeussler, Susanne
    Muesken, Mathias
    Wright, Victoria J.
    Camara, Miguel
    Williams, Paul
    Haenen, Steven
    Boerjan, Bart
    Bogaerts, Annelies
    Vierstraete, Evy
    Verleyen, Peter
    Schoofs, Liliane
    Willaert, Ronnie
    De Groote, Valerie N.
    Michiels, Jan
    Vercammen, Ken
    Crabbe, Aurelie
    Cornelis, Pierre
    PLOS ONE, 2011, 6 (12):
  • [7] Genome-wide Screen of Pseudomonas aeruginosa in Saccharomyces cerevisiae Identifies New Virulence Factors
    Zrieq, Rafat
    Sana, Thibault G.
    Vergin, Sandra
    Garvis, Steve
    Volfson, Irina
    Bleves, Sophie
    Voulhoux, Rome
    Hegemann, Johannes H.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2015, 5
  • [8] Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin
    Flynn, Jeffrey M.
    Phan, Chi
    Hunter, Ryan C.
    INFECTION AND IMMUNITY, 2017, 85 (08)
  • [9] Genome-wide analysis reveals a rhamnolipid-dependent modulation of flagellar genes in Pseudomonas aeruginosa PAO1
    Castro, Michele R.
    Dias, Graciela M.
    Salles, Tiago S.
    Cabral, Nubia M.
    Mariano, Danielly C. O.
    Oliveira, Hadassa L.
    Abdelhay, Eliana S. F. W.
    Binato, Renata
    Neves, Bianca C.
    CURRENT GENETICS, 2022, 68 (02) : 289 - 304
  • [10] A Genome-Wide Survey of Switchgrass Genome Structure and Organization
    Sharma, Manoj K.
    Sharma, Rita
    Cao, Peijian
    Jenkins, Jerry
    Bartley, Laura E.
    Qualls, Morgan
    Grimwood, Jane
    Schmutz, Jeremy
    Rokhsar, Daniel
    Ronald, Pamela C.
    PLOS ONE, 2012, 7 (04):