The linear profile decomposition for the fourth order Schrodinger equation

被引:15
作者
Jiang, Jin-Cheng [2 ]
Pausader, Benoit [3 ]
Shao, Shuanglin [1 ]
机构
[1] Univ Minnesota, Inst Math & Its Applicat, Minneapolis, MN 55455 USA
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
NLS; Profile decomposition; Extremal; GLOBAL WELL-POSEDNESS; BLOW-UP; SCATTERING; COMPACTNESS; MAXIMIZERS; REGULARITY; EXISTENCE;
D O I
10.1016/j.jde.2010.06.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the linear profile decomposition for the one-dimensional fourth order Schrodinger equation {iu(t) - mu Delta u + Delta(2)u = 0, t is an element of R, x is an element of R, u(0, x) = f(x)is an element of L-2, where mu >= 0. As an application, we establish a dichotomy result on the existence of extremals to the symmetric Schrodinger Strichartz inequality. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2521 / 2547
页数:27
相关论文
共 34 条
[1]  
[Anonymous], 1993, PRINCETON MATH SER
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]   HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS [J].
Bennett, Jonathan ;
Bez, Neal ;
Carbery, Anthony ;
Hundertmark, Dirk .
ANALYSIS & PDE, 2009, 2 (02) :147-158
[6]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[7]   On the role of quadratic oscillations in nonlinear Schrodinger equations II.: The L2-critical case [J].
Carles, Remi ;
Keraani, Sahbi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :33-62
[8]  
CARNEIRO E, ARXIV08094054
[9]  
Christ M, 2003, AM J MATH, V125, P1235
[10]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865