An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations

被引:482
作者
Yuste, SB [1 ]
Acedo, L [1 ]
机构
[1] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
fractional diffusion equation; von Neumann stability analysis; parabolic integrodifferential equations; finite difference methods;
D O I
10.1137/030602666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for solving the fractional diffusion equation, which could also be easily extended to other fractional partial differential equations, is considered. In this paper we combine the forward time centered space (FTCS) method, well known for the numerical integration of ordinary diffusion equations, with the Grunwald-Letnikov discretization of the Riemann-Liouville derivative to obtain an explicit FTCS scheme for solving the fractional diffusion equation. The stability analysis of this scheme is carried out by means of a powerful and simple new procedure close to the well-known von Neumann method for nonfractional partial differential equations. The analytical stability bounds are in excellent agreement with numerical test. A comparison between exact analytical solutions and numerical predictions is made.
引用
收藏
页码:1862 / 1874
页数:13
相关论文
共 30 条
[1]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[2]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[3]  
Carpinteri A., 1997, CISM courses and lect., P277
[4]  
Chuanmiao C., 1998, FINITE ELEMENT METHO
[5]   Continuous time random walks on moving fluids [J].
Compte, A .
PHYSICAL REVIEW E, 1997, 55 (06) :6821-6831
[6]   Fractional dynamics in random velocity fields [J].
Compte, A ;
Caceres, MO .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3140-3143
[7]   The numerical solution of fractional differential equations: Speed versus accuracy [J].
Ford, NJ ;
Simpson, AC .
NUMERICAL ALGORITHMS, 2001, 26 (04) :333-346
[8]   Discrete random walk models for symmetric Levy-Feller diffusion processes [J].
Gorenflo, R ;
De Fabritiis, G ;
Mainardi, F .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 269 (01) :79-89
[9]   Discrete random walk models for space-time fractional diffusion [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Pagnini, G ;
Paradisi, P .
CHEMICAL PHYSICS, 2002, 284 (1-2) :521-541
[10]  
Gorenflo R., 1998, Fract. Calc. Appl. Anal., V1, P167