Fenretinide in Cancer and Neurological Disease: A Two-Face Janus Molecule

被引:14
作者
Potenza, Rosa Luisa [1 ]
Lodeserto, Pietro [2 ]
Orienti, Isabella [2 ]
机构
[1] Ist Super Sanita, Natl Ctr Drug Res & Evaluat, I-00161 Rome, Italy
[2] Alma Mater Studiorum Univ Bologna, Dept Pharm & Biotechnol, I-40127 Bologna, Italy
关键词
fenretinide; anticancer drugs; nanomicellar formulations; repositioning; neuroinflammation; oxidative stress; neuroprotection; hormesis; TRANS-RETINOIC ACID; PHASE-I TRIAL; OXIDATIVE STRESS; ORAL FENRETINIDE; INSULIN-RESISTANCE; BREAST-CANCER; FATTY-ACIDS; NEURODEGENERATIVE DISEASES; HIGH-RISK; BRAIN;
D O I
10.3390/ijms23137426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, several chemotherapeutic drugs have been repositioned in neurological diseases, based on common biological backgrounds and the inverse comorbidity between cancer and neurodegenerative diseases. Fenretinide (all-trans-N-(4-hydroxyphenyl) retinamide, 4-HPR) is a synthetic derivative of all-trans-retinoic acid initially proposed in anticancer therapy for its antitumor effects combined with limited toxicity. Subsequently, fenretinide has been proposed for other diseases, for which it was not intentionally designed for, due to its ability to influence different biological pathways, providing a broad spectrum of pharmacological effects. Here, we review the most relevant preclinical and clinical findings from fenretinide and discuss its therapeutic role towards cancer and neurological diseases, highlighting the hormetic behavior of this pleiotropic molecule.
引用
收藏
页数:18
相关论文
共 116 条
[1]   Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach [J].
Advani, Dia ;
Gupta, Rohan ;
Tripathi, Rahul ;
Sharma, Sudhanshu ;
Ambasta, Rashmi K. ;
Kumar, Pravir .
NEUROCHEMISTRY INTERNATIONAL, 2020, 140 :104841
[2]  
Apraiz A, 2012, BIOCHEM CELL BIOL, V90, P209, DOI [10.1139/O2012-001, 10.1139/o2012-001]
[3]   Implication of mitochondria-derived ROS and cardiolipin peroxiclation in N-(4-hydroxyphenyl)retinamide-induced apoptosis [J].
Asumendi, A ;
Morales, MC ;
Alvarez, A ;
Aréchaga, J ;
Pérez-Yarza, H .
BRITISH JOURNAL OF CANCER, 2002, 86 (12) :1951-1956
[4]   The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease [J].
Barone, Eugenio ;
Di Domenico, Fabio ;
Perluigi, Marzia ;
Butterfield, D. Allan .
FREE RADICAL BIOLOGY AND MEDICINE, 2021, 176 :16-33
[5]   Fenretinide (4-HPR) Targets Caspase-9, ERK 1/2 and the Wnt3α/β-Catenin Pathway in Medulloblastoma Cells and Medulloblastoma Cell Spheroids [J].
Bassani, Barbara ;
Bartolini, Desiree ;
Pagani, Arianna ;
Principi, Elisa ;
Zollo, Massimo ;
Noonan, Douglas M. ;
Albini, Adriana ;
Bruno, Antonino .
PLOS ONE, 2016, 11 (07)
[6]   New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages [J].
Batista-Gonzalez, Ana ;
Vidal, Roberto ;
Criollo, Alfredo ;
Carreno, Leandro J. .
FRONTIERS IN IMMUNOLOGY, 2020, 10
[7]  
Beheshti S., 2020, DIAGNOSIS MANAGEMENT, P559
[8]   Lost in translation: Treatment trials in the SOD1 mouse and in human ALS [J].
Benatar, Michael .
NEUROBIOLOGY OF DISEASE, 2007, 26 (01) :1-13
[9]  
Bihaqi SW, 2012, CURR ALZHEIMER RES, V9, P574
[10]   Fenretinide Prevents Lipid-induced Insulin Resistance by Blocking Ceramide Biosynthesis [J].
Bikman, Benjamin T. ;
Guan, Yuguang ;
Shui, Guanghou ;
Siddique, M. Mobin ;
Holland, William L. ;
Kim, Ji Yun ;
Fabrias, Gemma ;
Wenk, Markus R. ;
Summers, Scott A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (21) :17426-17437