CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke

被引:14
作者
Avery, Emily W. [1 ]
Behland, Jonas [1 ,2 ]
Mak, Adrian [1 ,2 ]
Haider, Stefan P. [1 ,3 ]
Zeevi, Tal [1 ]
Sanelli, Pina C. [4 ]
Filippi, Christopher G. [5 ]
Malhotra, Ajay [1 ]
Matouk, Charles C. [6 ]
Griessenauer, Christoph J. [7 ,8 ,9 ]
Zand, Ramin [10 ]
Hendrix, Philipp [7 ,11 ]
Abedi, Vida [12 ,13 ]
Falcone, Guido J. [14 ]
Petersen, Nils [14 ]
Sansing, Lauren H. [15 ]
Sheth, Kevin N. [14 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Neuroradiol, New Haven, CT USA
[2] Charite Univ Med Berlin, CLAIM Charite Lab Artificial Intelligence Med, Berlin, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[4] Northwell Hlth, Sect Neuroradiol, Dept Radiol, Manhasset, NY USA
[5] Tufts Sch Med, Dept Radiol, Sect Neuroradiol, Boston, MA USA
[6] Yale Univ, Dept Neurosurg, Div Neurovasc Surg, Sch Med, New Haven, CT USA
[7] Geisinger Med Ctr, Dept Neurosurg, Danville, PA 17822 USA
[8] Paracelsus Med Univ, Res Inst Neurointervent, Salzburg, Austria
[9] Paracelsus Med Univ, Dept Neurosurg, Salzburg, Austria
[10] Geisinger, Dept Neurol, Danville, PA USA
[11] Saarland Univ, Dept Neurosurg, Med Ctr, Homburg, Germany
[12] Geisinger, Dept Mol & Funct Genom, Danville, PA USA
[13] Virginia Tech, Biocomplex Inst, Blacksburg, VA USA
[14] Yale Univ, Dept Neurol, Div Neurocrit Care & Emergency Neurol, Sch Med, New Haven, CT USA
[15] Yale Univ, Dept Neurol, Div Stroke & Vasc Neurol, Sch Med, New Haven, CT USA
关键词
Radiomics; Stroke; Large vessel occlusion; CTA; Quantitative imaging; Mechanical thrombectomy; SOURCE IMAGES; THROMBECTOMY; INFARCT;
D O I
10.1016/j.nicl.2022.103034
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background and Purpose: As "time is brain" in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics.Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale <= 2) at discharge and 3-month follow-up using four different input sets: "Radiomics", "Radiomics + Treatment" (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), "Clinical + Treatment" (baseline clinical variables and treatment), and "Combined" (radiomics, treatment, and baseline clinical variables).Results: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/ trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction.Conclusion: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool.
引用
收藏
页数:10
相关论文
共 36 条
  • [31] Optimizing Patient Selection for Interhospital Transfer and Endovascular Therapy in Acute Ischemic Stroke: Real-World Data From a Supraregional, Hub-and-Spoke Neurovascular Network in Germany
    Stefanou, Maria-Ioanna
    Stadler, Vera
    Baku, Dominik
    Hennersdorf, Florian
    Ernemann, Ulrike
    Ziemann, Ulf
    Poli, Sven
    Mengel, Annerose
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [32] Radiomics strategy for glioma grading using texture features from multiparametric MRI
    Tian, Qiang
    Yan, Lin-Feng
    Zhang, Xi
    Zhang, Xin
    Hu, Yu-Chuan
    Han, Yu
    Liu, Zhi-Cheng
    Nan, Hai-Yan
    Sun, Qian
    Sun, Ying-Zhi
    Yang, Yang
    Yu, Ying
    Zhang, Jin
    Hu, Bo
    Xiao, Gang
    Chen, Ping
    Tian, Shuai
    Xu, Jie
    Wang, Wen
    Cui, Guang-Bin
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (06) : 1518 - 1528
  • [33] Stroke atlas of the brain: Voxel-wise density-based clustering of infarct lesions topographic distribution
    Wang, Yanlu
    Juliano, Julia M.
    Liew, Sook-Lei
    McKinney, Alexander M.
    Payabvash, Seyedmehdi
    [J]. NEUROIMAGE-CLINICAL, 2019, 24
  • [34] Thrombectomy in posterior circulation stroke: differences in procedures and outcome compared to anterior circulation stroke in the prospective multicentre REVASK registry
    Weber, R.
    Minnerup, J.
    Nordmeyer, H.
    Eyding, J.
    Krogias, C.
    Hadisurya, J.
    Berger, K.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2019, 26 (02) : 299 - 305
  • [35] Yan Y., 2016, RBAYESIANOPTIMIZATIO
  • [36] Operator Versus Core Lab Adjudication of Reperfusion After Endovascular Treatment of Acute Ischemic Stroke
    Zhang, Guang
    Treurniet, Kilian M.
    Jansen, Ivo G. H.
    Emmer, Bart J.
    van den Berg, Rene
    Marquering, Henk A.
    Uyttenboogaart, Maarten
    Jenniskens, Sjoerd F. M.
    Roos, Yvo B. W. E. M.
    van Doormaal, Pieter Jan
    van Es, Adriaan C. G. M.
    van der Lugt, Aad
    Vos, Jan-Albert
    Nijeholt, Geert J. Lycklama A.
    van Zwam, Wim H.
    Shi, Huaizhang
    Yoo, Albert J.
    Dippel, Diederik W. J.
    Majoie, Charles B. L. M.
    [J]. STROKE, 2018, 49 (10) : 2376 - 2382