CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke

被引:14
作者
Avery, Emily W. [1 ]
Behland, Jonas [1 ,2 ]
Mak, Adrian [1 ,2 ]
Haider, Stefan P. [1 ,3 ]
Zeevi, Tal [1 ]
Sanelli, Pina C. [4 ]
Filippi, Christopher G. [5 ]
Malhotra, Ajay [1 ]
Matouk, Charles C. [6 ]
Griessenauer, Christoph J. [7 ,8 ,9 ]
Zand, Ramin [10 ]
Hendrix, Philipp [7 ,11 ]
Abedi, Vida [12 ,13 ]
Falcone, Guido J. [14 ]
Petersen, Nils [14 ]
Sansing, Lauren H. [15 ]
Sheth, Kevin N. [14 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Neuroradiol, New Haven, CT USA
[2] Charite Univ Med Berlin, CLAIM Charite Lab Artificial Intelligence Med, Berlin, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[4] Northwell Hlth, Sect Neuroradiol, Dept Radiol, Manhasset, NY USA
[5] Tufts Sch Med, Dept Radiol, Sect Neuroradiol, Boston, MA USA
[6] Yale Univ, Dept Neurosurg, Div Neurovasc Surg, Sch Med, New Haven, CT USA
[7] Geisinger Med Ctr, Dept Neurosurg, Danville, PA 17822 USA
[8] Paracelsus Med Univ, Res Inst Neurointervent, Salzburg, Austria
[9] Paracelsus Med Univ, Dept Neurosurg, Salzburg, Austria
[10] Geisinger, Dept Neurol, Danville, PA USA
[11] Saarland Univ, Dept Neurosurg, Med Ctr, Homburg, Germany
[12] Geisinger, Dept Mol & Funct Genom, Danville, PA USA
[13] Virginia Tech, Biocomplex Inst, Blacksburg, VA USA
[14] Yale Univ, Dept Neurol, Div Neurocrit Care & Emergency Neurol, Sch Med, New Haven, CT USA
[15] Yale Univ, Dept Neurol, Div Stroke & Vasc Neurol, Sch Med, New Haven, CT USA
关键词
Radiomics; Stroke; Large vessel occlusion; CTA; Quantitative imaging; Mechanical thrombectomy; SOURCE IMAGES; THROMBECTOMY; INFARCT;
D O I
10.1016/j.nicl.2022.103034
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background and Purpose: As "time is brain" in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics.Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale <= 2) at discharge and 3-month follow-up using four different input sets: "Radiomics", "Radiomics + Treatment" (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), "Clinical + Treatment" (baseline clinical variables and treatment), and "Combined" (radiomics, treatment, and baseline clinical variables).Results: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/ trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction.Conclusion: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool.
引用
收藏
页数:10
相关论文
共 36 条
  • [21] Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct
    Nogueira, R. G.
    Jadhav, A. P.
    Haussen, D. C.
    Bonafe, A.
    Budzik, R. F.
    Bhuva, P.
    Yavagal, D. R.
    Ribo, M.
    Cognard, C.
    Hanel, R. A.
    Sila, C. A.
    Hassan, A. E.
    Millan, M.
    Levy, E. I.
    Mitchell, P.
    Chen, M.
    English, J. D.
    Shah, Q. A.
    Silver, F. L.
    Pereira, V. M.
    Mehta, B. P.
    Baxter, B. W.
    Abraham, M. G.
    Cardona, P.
    Veznedaroglu, E.
    Hellinger, F. R.
    Feng, L.
    Kirmani, J. F.
    Lopes, D. K.
    Jankowitz, B. T.
    Frankel, M. R.
    Costalat, V.
    Vora, N. A.
    Yoo, A. J.
    Malik, A. M.
    Furlan, A. J.
    Rubiera, M.
    Aghaebrahim, A.
    Olivot, J. -M.
    Tekle, W. G.
    Shields, R.
    Graves, T.
    Lewis, R. J.
    Smith, W. S.
    Liebeskind, D. S.
    Saver, J. L.
    Jovin, T. G.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (01) : 11 - 21
  • [22] Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images
    Ortiz-Ramon, Rafael
    Hernandez, Maria del C. Valdes
    Gonzalez-Castro, Victor
    Makin, Stephen
    Armitage, Paul A.
    Aribisala, Benjamin S.
    Bastin, Mark E.
    Dearye, Ian J.
    Wardlaw, Joanna M.
    Moratal, David
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 74 : 12 - 24
  • [24] Acute Ischemic Stroke: Infarct Core Estimation on CT Angiography Source Images Depends on CT Angiography Protocol
    Pulli, Benjamin
    Schaefer, Pamela W.
    Hakimelahi, Reza
    Chaudhry, Zeshan A.
    Lev, Michael H.
    Hirsch, Joshua A.
    Gonzalez, R. Gilberto
    Yoo, Albert J.
    [J]. RADIOLOGY, 2012, 262 (02) : 593 - 604
  • [25] Pyradiomics-community, 2018, PYR DOC REL 2 1 2
  • [26] Lack of Racial, Ethnic, and Sex Disparities in Ischemic Stroke Care Metrics within a Tele-Stroke Network
    Reddy, Sujan
    Wu, Tzu-Ching
    Zhang, Jing
    Rahbar, Mohammad Hossein
    Ankrom, Christy
    Zha, Alicia
    Cossey, T. C.
    Aertker, Benjamin
    Vahidy, Farhaan
    Parsha, Kaushik
    Jones, Erica
    Sharrief, Anjail
    Savitz, Sean I.
    Jagolino-Cole, Amanda
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (01)
  • [27] Radiomic signature of DWI-FLAIR mismatch in large vessel occlusion stroke
    Regenhardt, Robert W.
    Bretzner, Martin
    Zotin, Maria Clara Zanon
    Bonkhoff, Anna K.
    Etherton, Mark R.
    Hong, Sungmin
    Das, Alvin S.
    Alotaibi, Naif M.
    Vranic, Justin E.
    Dmytriw, Adam A.
    Stapleton, Christopher J.
    Patel, Aman B.
    Kuchcinski, Gregory
    Rost, Natalia S.
    Leslie-Mazwi, Thabele M.
    [J]. JOURNAL OF NEUROIMAGING, 2022, 32 (01) : 63 - 67
  • [28] pROC: an open-source package for R and S plus to analyze and compare ROC curves
    Robin, Xavier
    Turck, Natacha
    Hainard, Alexandre
    Tiberti, Natalia
    Lisacek, Frederique
    Sanchez, Jean-Charles
    Mueller, Markus
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [29] Deep learning
    Rusk, Nicole
    [J]. NATURE METHODS, 2016, 13 (01) : 35 - 35
  • [30] CT Angiographic Source Images: Flow- or Volume-Weighted?
    Sharma, M.
    Fox, A. J.
    Symons, S.
    Jairath, A.
    Aviv, R. I.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (02) : 359 - 364