CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke

被引:14
作者
Avery, Emily W. [1 ]
Behland, Jonas [1 ,2 ]
Mak, Adrian [1 ,2 ]
Haider, Stefan P. [1 ,3 ]
Zeevi, Tal [1 ]
Sanelli, Pina C. [4 ]
Filippi, Christopher G. [5 ]
Malhotra, Ajay [1 ]
Matouk, Charles C. [6 ]
Griessenauer, Christoph J. [7 ,8 ,9 ]
Zand, Ramin [10 ]
Hendrix, Philipp [7 ,11 ]
Abedi, Vida [12 ,13 ]
Falcone, Guido J. [14 ]
Petersen, Nils [14 ]
Sansing, Lauren H. [15 ]
Sheth, Kevin N. [14 ]
Payabvash, Seyedmehdi [1 ]
机构
[1] Yale Sch Med, Dept Radiol & Biomed Imaging, Sect Neuroradiol, New Haven, CT USA
[2] Charite Univ Med Berlin, CLAIM Charite Lab Artificial Intelligence Med, Berlin, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Otorhinolaryngol, Univ Hosp, Munich, Germany
[4] Northwell Hlth, Sect Neuroradiol, Dept Radiol, Manhasset, NY USA
[5] Tufts Sch Med, Dept Radiol, Sect Neuroradiol, Boston, MA USA
[6] Yale Univ, Dept Neurosurg, Div Neurovasc Surg, Sch Med, New Haven, CT USA
[7] Geisinger Med Ctr, Dept Neurosurg, Danville, PA 17822 USA
[8] Paracelsus Med Univ, Res Inst Neurointervent, Salzburg, Austria
[9] Paracelsus Med Univ, Dept Neurosurg, Salzburg, Austria
[10] Geisinger, Dept Neurol, Danville, PA USA
[11] Saarland Univ, Dept Neurosurg, Med Ctr, Homburg, Germany
[12] Geisinger, Dept Mol & Funct Genom, Danville, PA USA
[13] Virginia Tech, Biocomplex Inst, Blacksburg, VA USA
[14] Yale Univ, Dept Neurol, Div Neurocrit Care & Emergency Neurol, Sch Med, New Haven, CT USA
[15] Yale Univ, Dept Neurol, Div Stroke & Vasc Neurol, Sch Med, New Haven, CT USA
关键词
Radiomics; Stroke; Large vessel occlusion; CTA; Quantitative imaging; Mechanical thrombectomy; SOURCE IMAGES; THROMBECTOMY; INFARCT;
D O I
10.1016/j.nicl.2022.103034
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background and Purpose: As "time is brain" in acute stroke triage, the need for automated prognostication tools continues to increase, particularly in rapidly expanding tele-stroke settings. We aimed to create an automated prognostication tool for anterior circulation large vessel occlusion (LVO) stroke based on admission CTA radiomics.Methods: We automatically extracted 1116 radiomics features from the anterior circulation territory on admission CTAs of 829 acute LVO stroke patients who underwent mechanical thrombectomy in two academic centers. We trained, optimized, validated, and compared different machine-learning models to predict favorable outcome (modified Rankin Scale <= 2) at discharge and 3-month follow-up using four different input sets: "Radiomics", "Radiomics + Treatment" (radiomics, post-thrombectomy reperfusion grade, and intravenous thrombolysis), "Clinical + Treatment" (baseline clinical variables and treatment), and "Combined" (radiomics, treatment, and baseline clinical variables).Results: For discharge outcome prediction, models were optimized/trained on n = 494 and tested on an independent cohort of n = 100 patients from Yale. Receiver operating characteristic analysis of the independent cohort showed no significant difference between best-performing Combined input models (area under the curve, AUC = 0.77) versus Radiomics + Treatment (AUC = 0.78, p = 0.78), Radiomics (AUC = 0.78, p = 0.55), or Clinical + Treatment (AUC = 0.77, p = 0.87) models. For 3-month outcome prediction, models were optimized/ trained on n = 373 and tested on an independent cohort from Yale (n = 72), and an external cohort from Geisinger Medical Center (n = 232). In the independent cohort, there was no significant difference between Combined input models (AUC = 0.76) versus Radiomics + Treatment (AUC = 0.72, p = 0.39), Radiomics (AUC = 0.72, p = 0.39), or Clinical + Treatment (AUC = 76, p = 0.90) models; however, in the external cohort, the Combined model (AUC = 0.74) outperformed Radiomics + Treatment (AUC = 0.66, p < 0.001) and Radiomics (AUC = 0.68, p = 0.005) models for 3-month prediction.Conclusion: Machine-learning signatures of admission CTA radiomics can provide prognostic information in acute LVO stroke candidates for mechanical thrombectomy. Such objective and time-sensitive risk stratification can guide treatment decisions and facilitate tele-stroke assessment of patients. Particularly in the absence of reliable clinical information at the time of admission, models solely using radiomics features can provide a useful prognostication tool.
引用
收藏
页数:10
相关论文
共 36 条
  • [1] Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging
    Albers, G. W.
    Marks, M. P.
    Kemp, S.
    Christensen, S.
    Tsai, J. P.
    Ortega-Gutierrez, S.
    McTaggart, R. A.
    Torbey, M. T.
    Kim-Tenser, M.
    Leslie-Mazwi, T.
    Sarraj, A.
    Kasner, S. E.
    Ansari, S. A.
    Yeatts, S. D.
    Hamilton, S.
    Mlynash, M.
    Heit, J. J.
    Zaharchuk, G.
    Kim, S.
    Carrozzella, J.
    Palesch, Y. Y.
    Demchuk, A. M.
    Bammer, R.
    Lavori, P. W.
    Broderick, J. P.
    Lansberg, M. G.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (08) : 708 - 718
  • [2] Random forest in remote sensing: A review of applications and future directions
    Belgiu, Mariana
    Dragut, Lucian
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 : 24 - 31
  • [3] Benjamin EJ, 2018, CIRCULATION, V137, pE67, DOI [10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000530]
  • [4] Acute brain infarct: Detection and delineation with CT angiographic source images versus nonenhanced CT scans
    Camargo, Erica C. S.
    Furie, Karen L.
    Singhal, Aneesh B.
    Roccatagliata, Luca
    Cunnane, Mary E.
    Halpern, Elkan F.
    Harris, Gordon J.
    Smith, Wade S.
    Gonzalez, Ramon G.
    Koroshetz, Walter J.
    Lev, Michael H.
    [J]. RADIOLOGY, 2007, 244 (02) : 541 - 548
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Modified Thrombolysis in Cerebral Infarction 2C/Thrombolysis in Cerebral Infarction 3 Reperfusion Should Be the Aim of Mechanical Thrombectomy Insights From the ASTER Trial (Contact Aspiration Versus Stent Retriever for Successful Revascularization)
    Dargazanli, Cyril
    Fahed, Robert
    Blanc, Raphael
    Gory, Benjamin
    Labreuche, Julien
    Duhamel, Alain
    Marnat, Gaultier
    Saleme, Suzana
    Costalat, Vincent
    Bracard, Serge
    Desal, Hubert
    Mazighi, Mikael
    Consoli, Arturo
    Piotin, Michel
    Lapergue, Bertrand
    [J]. STROKE, 2018, 49 (05) : 1189 - +
  • [7] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [8] Acute Ischemic Stroke with Vessel Occlusion-Prevalence and Thrombectomy Eligibility at a Comprehensive Stroke Center
    Desai, Shashvat M.
    Starr, Matthew
    Molyneaux, Bradley J.
    Rocha, Marcelo
    Jovin, Tudor G.
    Jadhav, Ashutosh P.
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2019, 28 (11)
  • [9] Telestroke Across the Continuum of Care: Lessons from the COVID-19 Pandemic
    Guzik, Amy K.
    Martin-Schild, Sheryl
    Tadi, Prasanna
    Chapman, Sherita N.
    Al Kasab, Sami
    Martini, Sharyl R.
    Meyer, Brett C.
    Demaerschalk, Bart M.
    Wozniak, Marcella A.
    Southerland, Andrew M.
    [J]. JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2021, 30 (07)
  • [10] Prediction of post-radiotherapy locoregional progression in HPV-associated oropharyngeal squamous cell carcinoma using machine-learning analysis of baseline PET/CT radiomics
    Haider, Stefan P.
    Sharaf, Kariem
    Zeevi, Tal
    Baumeister, Philipp
    Reichel, Christoph
    Forghani, Reza
    Kann, Benjamin H.
    Petukhova, Alexandra
    Judson, Benjamin L.
    Prasad, Manju L.
    Liu, Chi
    Burtness, Barbara
    Mahajan, Amit
    Payabvash, Seyedmehdi
    [J]. TRANSLATIONAL ONCOLOGY, 2021, 14 (01):