Degradation of 2,6-dichloro-1,4-benzoquinone by advanced oxidation with UV, H2O2, and O3: parameter optimization and model building

被引:3
作者
Pan, Zhangbin [1 ,2 ]
Zhu, Xiaokang [2 ,3 ]
Li, Guifang [2 ]
Wang, Yongqiang [2 ,3 ]
Li, Mei [3 ]
Sun, Shaohua [2 ]
Jia, Ruibao [2 ]
Hou, Li'an [1 ,2 ,4 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[2] Shandong Prov Water Supply & Drainage Monitoring, Jinan 250101, Peoples R China
[3] Shandong Jianzhu Univ, Sch Municipal & Environm Engn, Jinan 250101, Peoples R China
[4] Xian High Tech Inst, Xian 710025, Peoples R China
关键词
2; 6-dichloro-1; 4-benzoquinone; Box-Behnken design; degradation pathway; drinking water; halogenated benzoquinone; DISINFECTION BY-PRODUCTS; SULFATE RADICALS; SURFACE; DESIGN; WATER;
D O I
10.2166/aqua.2021.026
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Halobenzoquinones are disinfection by-products with cytotoxicity, carcinogenicity, and genotoxicity. In this study, we investigated the removal of the HBQ 2,6-dichloro-1,4-benzoquinone (DCBQ) from water using advanced oxidation processes. The removal of DCBQ from water using UV, H2O2, and O-3 advanced oxidation processes individually was not ideal with removal rates of 36.1% with a UV dose of 180 mJ/cm(2), 32.0% with 2 mg/L H2O2, and 57.9% with 2 mg/L O-3. Next, we investigated using the combined UV/H2O2/O-3 advanced oxidation process to treat water containing DCBQ. A Box-Behnken design was used to optimize the parameters of the UV/H2O2/O-3 process, which gave the following optimum DCBQ removal conditions: UV dose of 180 mJ/cm(2), O-3 concentration of 0.51 mg/L, and H2O2 concentration of 1.76 mg/L. The DCBQ removal rate under the optimum conditions was 94.3%. We also found that lower humic acid concentrations promoted DCBQ degradation, while higher humic acid concentrations inhibited DCBQ degradation.
引用
收藏
页码:1159 / 1169
页数:11
相关论文
共 26 条
[1]   Effect of light on humic substances: Production of reactive species [J].
Aguer, JP ;
Richard, C ;
Andreux, F .
ANALUSIS, 1999, 27 (05) :387-390
[2]   Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J].
Balcioglu, IA ;
Ötker, M .
CHEMOSPHERE, 2003, 50 (01) :85-95
[3]   Optimization of Fenton process using response surface methodology and analytic hierarchy process for landfill leachate treatment [J].
Biglarijoo, Nader ;
Mirbagheri, Seyed Ahmad ;
Ehteshami, Majid ;
Ghaznavi, Simin Moavenzadeh .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2016, 104 :150-160
[4]   Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study [J].
Chen, Liwei ;
Cai, Tianming ;
Cheng, Chuan ;
Xiong, Zhuang ;
Ding, Dahu .
CHEMICAL ENGINEERING JOURNAL, 2018, 351 :1137-1146
[5]  
Ding Chunsheng, 2018, Journal of Zhejiang University of Technology, V46, P337
[6]  
Du Z., 2020, RES DEGRADATION NITR
[7]   Pilot-scale UV/H2O2-BAC process for drinking water treatment - Analysis and comparison of different activated carbon columns [J].
Du, Zhenqi ;
Jia, Ruibao ;
Li, Congcong ;
Cui, Pengwei ;
Song, Wuchang ;
Liu, Jianguang .
CHEMICAL ENGINEERING JOURNAL, 2020, 382
[8]   Response surface methodological approach for inclusion of perfluorocarbon in actinorhodin fermentation medium [J].
Elibol, M .
PROCESS BIOCHEMISTRY, 2002, 38 (05) :667-673
[9]   Box-Behnken design: An alternative for the optimization of analytical methods [J].
Ferreira, S. L. C. ;
Bruns, R. E. ;
Ferreira, H. S. ;
Matos, G. D. ;
David, J. M. ;
Brandao, G. C. ;
da Silva, E. G. P. ;
Portugal, L. A. ;
dos Reis, P. S. ;
Souza, A. S. ;
dos Santos, W. N. L. .
ANALYTICA CHIMICA ACTA, 2007, 597 (02) :179-186
[10]  
Han J., 2017, PROCESS SAF ENVIRON