Handling Ensemble N-Representability Constraint in Explicit-by-Implicit Manner

被引:16
作者
Yao, Yi-Fan [1 ,2 ]
Fang, Wei-Hai [1 ,2 ,3 ]
Su, Neil Qiang [1 ,2 ]
机构
[1] Nankai Univ, Key Lab Adv Energy Mat Chem, Dept Chem, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Renewable Energy Convers & Storage Ctr RECAST, Tianjin 300071, Peoples R China
[3] Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCED DENSITY-MATRIX; NATURAL SPIN-ORBITALS; FUNCTIONAL THEORY; BASIS-SETS; EXCHANGE;
D O I
10.1021/acs.jpclett.1c01835
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The convergence issues caused by the improper treatment of the ensemble N-representability constraint have severely affected the applicability and reproducibility of reduced density matrix functional theory (RDMFT). Unlike the commonly used Lagrange methods explicitly bringing the constraint into the objective functions, we present a different idea to handle the constraint in an implicit manner, which is achieved by introducing implicit functions to exactly consider the nonlinear unclear connection embedded in the explicit constraint. This explicit-by-implicit idea, denoted as EBI, thus transforms the constrained optimization problem into an unconstrained minimization problem. The tests on different systems, initial guesses, and functionals demonstrate the superiority of EBI in the treatment of the ensemble N-representability constraint. Therefore, EBI solves the convergence issues of the Lagrange methods, which is essential for further development and application of RDMFT. Besides, the idea of EBI is helpful for the treatment of different constrained problems in modern physics and chemistry.
引用
收藏
页码:6788 / 6793
页数:6
相关论文
共 45 条
[1]   NWChem: Past, present, and future [J].
Apra, E. ;
Bylaska, E. J. ;
de Jong, W. A. ;
Govind, N. ;
Kowalski, K. ;
Straatsma, T. P. ;
Valiev, M. ;
van Dam, H. J. J. ;
Alexeev, Y. ;
Anchell, J. ;
Anisimov, V ;
Aquino, F. W. ;
Atta-Fynn, R. ;
Autschbach, J. ;
Bauman, N. P. ;
Becca, J. C. ;
Bernholdt, D. E. ;
Bhaskaran-Nair, K. ;
Bogatko, S. ;
Borowski, P. ;
Boschen, J. ;
Brabec, J. ;
Bruner, A. ;
Cauet, E. ;
Chen, Y. ;
Chuev, G. N. ;
Cramer, C. J. ;
Daily, J. ;
Deegan, M. J. O. ;
Dunning, T. H., Jr. ;
Dupuis, M. ;
Dyall, K. G. ;
Fann, G., I ;
Fischer, S. A. ;
Fonari, A. ;
Fruechtl, H. ;
Gagliardi, L. ;
Garza, J. ;
Gawande, N. ;
Ghosh, S. ;
Glaesemann, K. ;
Goetz, A. W. ;
Hammond, J. ;
Helms, V ;
Hermes, E. D. ;
Hirao, K. ;
Hirata, S. ;
Jacquelin, M. ;
Jensen, L. ;
Johnson, B. G. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (18)
[2]   Minimization procedure in reduced density matrix functional theory by means of an effective noninteracting system [J].
Baldsiefen, Tim ;
Gross, E. K. U. .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2013, 1003 :114-122
[3]  
Bertsekas D. P., 2014, Constrained Optimization and Lagrange Multiplier Methods
[4]   An approximate exchange-correlation hole density as a functional of the natural orbitals [J].
Buijse, MA ;
Baerends, EJ .
MOLECULAR PHYSICS, 2002, 100 (04) :401-421
[5]   Insights into current limitations of density functional theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
SCIENCE, 2008, 321 (5890) :792-794
[6]   Challenges for Density Functional Theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
CHEMICAL REVIEWS, 2012, 112 (01) :289-320
[7]   STRUCTURE OF FERMION DENSITY MATRICES [J].
COLEMAN, AJ .
REVIEWS OF MODERN PHYSICS, 1963, 35 (03) :668-&
[9]  
Engel E, 2011, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-642-14090-7
[10]  
Fletcher R., 2013, Practical Methods of Optimization