Ekeland's inverse function theorem in graded Frechet spaces revisited for multifunctions

被引:5
作者
Van Ngai, Huynh [1 ]
Thera, Michel [2 ,3 ]
机构
[1] Univ Quynhon, Dept Math, Quynhon, Vietnam
[2] Univ Limoges, Lab XLIM, UMR CNRS 6172, Limoges, France
[3] Federat Univ Australia, Ctr Informat & Appl Optimizat, Ballarat, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Inverse function theorem; Frechet space; Nash-Moser theorem; Contingent derivative; Ekeland's variational principle; Implicit multifunction theorem; DIFFERENTIAL-EQUATIONS; IMPLICIT; NASH; MOSER;
D O I
10.1016/j.jmaa.2017.07.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some inverse function theorems and implicit function theorems for set-valued mappings between Frechet spaces. The proof relies on Lebesgue's Dominated Convergence Theorem and on Ekeland's variational principle. An application to the existence of solutions of differential equations in Frechet spaces with non-smooth data is given. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1403 / 1421
页数:19
相关论文
共 22 条