A modified LM algorithm for tensor complementarity problems over the circular cone

被引:3
|
作者
Ke, Yifen [1 ,2 ,3 ,4 ]
Ma, Changfeng [1 ,2 ,3 ]
Zhang, Huai [1 ,2 ,4 ,5 ]
机构
[1] Fujian Normal Univ, Coll Math & Informat, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, FJKLMAA, Fuzhou 350117, Peoples R China
[3] Ctr Appl Math Fujian Prov FJNU, Fuzhou 350117, Peoples R China
[4] Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[5] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensor complementarity problem; Circular cone; Levenberg-Marquardt algorithm; Quadratic convergence; SMOOTHING NEWTON METHOD; INTERIOR-POINT ALGORITHMS; MATRIX-SPLITTING METHOD; MERIT FUNCTIONS; 2ND-ORDER; CONVERGENCE; EQUATIONS;
D O I
10.1016/j.cam.2021.113689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The tensor complementarity problem over circular cone (CCTCP for short) is studied, which is a specially structured nonlinear complementarity problem. Useful properties of the circular cone help to reformulate equivalently CCTCP as an implicit fixed-point equation. Based on the smoothing functions, we reformulate the obtained fixed-point equation as a family of parameterized smoothing equations. Moreover, we propose a modified Levenberg-Marquardt (LM) algorithm to solve the problem iteratively and show that the sequence generated by the new algorithm converges to a solution quadratically under suitable conditions. Preliminary numerical results demonstrate that the proposed algorithm is effective. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Generalized Tensor Complementarity Problems Over a Polyhedral Cone
    Ling, Liyun
    Ling, Chen
    He, Hongjin
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)
  • [2] The relaxation modulus-based matrix splitting iteration methods for circular cone nonlinear complementarity problems
    Ke, Yi-Fen
    Ma, Chang-Feng
    Zhang, Huai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05) : 6795 - 6820
  • [3] Solvability of monotone tensor complementarity problems
    Zhang, Liping
    Sun, Defeng
    Luan, Zhenting
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (03) : 647 - 664
  • [4] The convergence of a modified smoothing-type algorithm for the symmetric cone complementarity problem
    Tang J.
    Dong L.
    Fang L.
    Zhou J.
    Tang, J. (jingyongtang@163.com), 1600, Springer Verlag (43): : 307 - 328
  • [5] Solvability of monotone tensor complementarity problems
    Liping Zhang
    Defeng Sun
    Zhenting Luan
    Science China Mathematics, 2023, 66 : 647 - 664
  • [6] A predictor-corrector smoothing Newton method for symmetric cone complementarity problems
    Liu, Lixia
    Liu, Sanyang
    Liu, Hongwei
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 2989 - 2999
  • [7] Tensor Complementarity Problems-Part II: Solution Methods
    Qi, Liqun
    Huang, Zheng-Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (02) : 365 - 385
  • [8] ON THE PROPERTIES OF TENSOR COMPLEMENTARITY PROBLEMS
    Yu, W.
    Ling, C.
    He, H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 675 - 691
  • [9] Numerical study of a smoothing algorithm for the complementarity system over the second-order cone
    Dong, Li
    Tang, Jingyong
    Song, Xinyu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 2845 - 2861
  • [10] AN EFFICIENT ALGORITHM FOR SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Lei-Hong
    Yang, Wei Hong
    MATHEMATICS OF COMPUTATION, 2014, 83 (288) : 1701 - 1726