A second-order numerical scheme for the Ericksen-Leslie equation

被引:0
作者
Wang, Danxia [1 ]
Miao, Ni [1 ]
Liu, Jing [1 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Jinzhong 030600, Shanxi, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
Ericksen-Leslie equation; nematic liquid crystal; finite element; second-order accuracy; pressure-correction; FINITE-ELEMENT SCHEME; DE-GENNES THEORY; UNIQUENESS THEOREMS; LIQUID-CRYSTALS; VARIABLE STEPS; WELL-POSEDNESS; EXISTENCE; APPROXIMATION; MODEL; SYSTEM;
D O I
10.3934/math.2022867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a finite element approximation for the Ericksen-Leslie model of nematic liquid crystal. Based on a saddle-point formulation of the director vector, a second-order backward differentiation formula (BDF) numerical scheme is proposed, where a pressure-correction strategy is used to decouple the computation of the pressure from that of the velocity. Designing this scheme leads to solving a linear system at each time step. Furthermore, via implementing rigorous theoretical analysis, we prove that the proposed scheme enjoys the energy dissipation law. Some numerical simulations are also performed to demonstrate the accuracy of the proposed scheme.
引用
收藏
页码:15834 / 15853
页数:20
相关论文
共 37 条
[1]  
Alghamdi A. M., 2020, NOVI SAD J MATH, V50, P89, DOI [10.30755/NSJOM.09142, DOI 10.30755/NSJOM.09142]
[2]   Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows [J].
An, Rong ;
Su, Jian .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (02) :979-1008
[3]   Finite element approximation of nematic liquid crystal flows using a saddle-point structure [J].
Badia, Santiago ;
Guillen-Gonzalez, Francisco ;
Vicente Gutierrez-Santacreu, Juan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1686-1706
[4]   Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow [J].
Becker, Roland ;
Feng, Xiaobing ;
Prohl, Andreas .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :1704-1731
[5]   WELL-POSEDNESS AND LONG TERM BEHAVIOR OF A SIMPLIFIED ERICKSEN-LESLIE NON-AUTONOMOUS SYSTEM FOR NEMATIC LIQUID CRYSTAL FLOWS [J].
Bosia, Stefano .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :407-441
[6]   A TIME-SPLITTING FINITE-ELEMENT STABLE APPROXIMATION FOR THE ERICKSEN-LESLIE EQUATIONS [J].
Cabrales, R. C. ;
Guillen-Gonzalez, F. ;
Gutierrez-Santacreu, J. V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :B261-B282
[7]   Existence and uniqueness theorems for the full three-dimensional Ericksen-Leslie system [J].
Chechkin, Gregory A. ;
Ratiu, Tudor S. ;
Romanov, Maxim S. ;
Samokhin, Vyacheslav N. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (05) :807-843
[8]   Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System [J].
Chechkin, Gregory A. ;
Ratiu, Tudor S. ;
Romanov, Maxim S. ;
Samokhin, Vyacheslav N. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (03) :571-589
[9]   On unique solvability of the full three-dimensional Ericksen-Leslie system [J].
Chechkin, Gregory A. ;
Ratiu, Tudor S. ;
Romanov, Maxim S. ;
Samokhin, Vyacheslav N. .
COMPTES RENDUS MECANIQUE, 2016, 344 (07) :459-463
[10]   Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshitz equation [J].
Chen, Jingrun ;
Wang, Cheng ;
Xie, Changjian .
APPLIED NUMERICAL MATHEMATICS, 2021, 168 :55-74