Well-Posedness, Blow-up Criteria and Stability for Solutions of the Generalized MHD Equations in Sobolev-Gevrey Spaces

被引:6
|
作者
Guterres, Robert H. [1 ]
Melo, Wilberclay G. [2 ]
Rocha, Nata F. [3 ]
Santos, Thyago S. R. [4 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[3] Univ Estadual Piaui, Campus Clovis Moura, BR-64078213 Teresina, PI, Brazil
[4] Inst Matematica Pura & Aplicada, IMPA, Estr Dona Catarina 110, BR-22460320 Rio De Janeiro, RJ, Brazil
关键词
Generalized MHD equations; Existence of solutions; Blow-up criteria; Stability for global solutions; Sobolev-Gevrey spaces; LONG-TIME DECAY;
D O I
10.1007/s10440-021-00448-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents the existence of local in time solutions for the generalized Magnetohydrodynamics equations in Sobolev-Gevrey (and Sobolev) spaces. Moreover, we establish the behavior of these solutions at potential blow-up times. In addition, if the initial data is assumed to be small enough, this paper proves the existence of global in time solutions, which are stable, in these same type of spaces.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Well-posedness and blow-up phenomena for the generalized Degasperis-Procesi equation
    Wu, Xinglong
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 136 - 146
  • [32] A NOTE ON GLOBAL WELL-POSEDNESS AND BLOW-UP OF SOME SEMILINEAR EVOLUTION EQUATIONS
    Saanouni, Tarek
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (03): : 355 - 372
  • [33] ON THE LAGRANGIAN AVERAGED EULER EQUATIONS: LOCAL WELL-POSEDNESS AND BLOW-UP CRITERION
    Yu, Xinwei
    Zhai, Zhichun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1809 - 1823
  • [34] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    杨凌燕
    李晓光
    吴永洪
    Louis CACCETTA
    Acta Mathematica Scientia(English Series), 2017, 37 (04) : 941 - 948
  • [35] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    Mediterranean Journal of Mathematics, 2022, 19
  • [36] LOCAL WELL-POSEDNESS AND BLOW-UP PHENOMENA FOR A GENERALIZED CAMASSA-HOLM EQUATION WITH PEAKON SOLUTIONS
    Tu, Xi
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (05) : 2781 - 2801
  • [37] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [38] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [39] The local well-posedness, blow-up criteria and Gevrey regularity of solutions for a two-component high-order Camassa-Holm system
    Zhang, Lei
    Li, Xiuting
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 414 - 440
  • [40] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Cardoso, Mykael
    Farah, Luiz Gustavo
    Guzman, Carlos M.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1337 - 1367