Optimal actuator location of minimum norm controls for heat equation with general controlled domain

被引:10
作者
Guo, Bao-Zhu [1 ,2 ,3 ]
Xu, Yashan [4 ]
Yang, Dong-Hui [5 ,6 ]
机构
[1] Shanxi Univ, Sch Math, Taiyuan 030006, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, South Africa
[4] Fudan Univ, Sch Math Sci, KLMNS, Shanghai 200433, Peoples R China
[5] Cent S Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
[6] Cent S Univ, Sch Informat Sci & Engn, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会; 中国博士后科学基金;
关键词
Heat equation; Optimal control; Optimal location; Game theory; Nash equilibrium; OPTIMAL-DESIGN; WAVE-EQUATION; SHAPE; TIME; APPROXIMATION; STABILIZATION;
D O I
10.1016/j.jde.2016.05.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study optimal actuator location of the minimum norm controls for a multi-dimensional heat equation with control defined in the space L-2(Omega x (0, T)). The actuator domain is time-varying in the sense that it is only required to have a prescribed Lebesgue measure for any moment. We select an optimal actuator location so that the optimal control takes its minimal norm over all possible actuator domains. We build a framework of finding the Nash equilibrium so that we can develop a sufficient and necessary condition to characterize the optimal relaxed solutions for both actuator location and corresponding optimal control of the open -loop system. The existence and uniqueness of the optimal classical solutions are therefore concluded. As a result, we synthesize both optimal actuator location and corresponding optimal control into a time-varying feedbacks. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:3588 / 3614
页数:27
相关论文
共 28 条
[1]   LONG TIME BEHAVIOR OF A TWO-PHASE OPTIMAL DESIGN FOR THE HEAT EQUATION [J].
Allaire, Gregoire ;
Muench, Arnaud ;
Periago, Francisco .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) :5333-5356
[2]   Observability inequalities and measurable sets [J].
Apraiz, J. ;
Escauriaza, L. ;
Wang, G. ;
Zhang, C. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (11) :2433-2475
[3]  
Aubin J., 1998, Optima and equilibria: an introduction to nonlinear analysis
[4]   An algorithm for LQ optimal actuator location [J].
Darivandi, Neda ;
Morris, Kirsten ;
Khajepour, Amir .
SMART MATERIALS AND STRUCTURES, 2013, 22 (03)
[5]   ON CONJUGATE CONVEX FUNCTIONS [J].
FENCHEL, W .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (01) :73-77
[6]   Optimal actuator location for time and norm optimal control of null controllable heat equation [J].
Guo, Bao-Zhu ;
Yang, Dong-Hui .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2015, 27 (01) :23-48
[7]   ON CONVERGENCE OF BOUNDARY HAUSDORFF MEASURE AND APPLICATION TO A BOUNDARY SHAPE OPTIMIZATION PROBLEM [J].
Guo, Bao-Zhu ;
Yang, Dong-Hui .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (01) :253-272
[8]   SOME COMPACT CLASSES OF OPEN SETS UNDER HAUSDORFF DISTANCE AND APPLICATION TO SHAPE OPTIMIZATION [J].
Guo, Bao-Zhu ;
Yang, Dong-Hui .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (01) :222-242
[9]   A spillover phenomenon in the optimal location of actuators [J].
Hébrard, P ;
Henrot, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) :349-366
[10]   Optimal shape and position of the actuators for the stabilization of a string [J].
Hébrard, P ;
Henrot, A .
SYSTEMS & CONTROL LETTERS, 2003, 48 (3-4) :199-209