Existence of nonnegative solutions for quasilinear elliptic equations with indefinite critical nonlinearities

被引:3
作者
Narukawa, Kimiaki [1 ]
Takajo, Yukihiro [1 ]
机构
[1] Naruto Univ Educ, Dept Math, Naruto 7728502, Japan
基金
日本学术振兴会;
关键词
Quasilinear elliptic equation; Nonnegative solution; Critical exponent; Indefinite coefficients; CRITICAL SOBOLEV EXPONENTS; POSITIVE SOLUTIONS; R-N; LOCAL SUPERLINEARITY; CRITICAL GROWTH; P-LAPLACIAN; SUBLINEARITY;
D O I
10.1016/j.na.2011.05.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the quasilinear elliptic equation -div(phi(vertical bar del u vertical bar)del u) = a(x) f (u) + b(x) g(u) in Omega with Dirichlet boundary condition u = 0 on partial derivative Omega, where Omega is a bounded domain in R(N), a(x), b(x) are sign-changing continuous functions, and g(u) has critical growth at infinity with respect to the principal part phi. A nonnegative, nontrivial solution is given under appropriate growth conditions on f (u), g(u) at 0 and infinity. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5793 / 5813
页数:21
相关论文
共 18 条