ANN-Based Binary Backtracking Search Algorithm for VPP Optimal Scheduling and Cost-Effective Evaluation

被引:20
作者
Hannan, M. A. [1 ]
Abdolrasol, M. G. [2 ]
Mohamed, Ramizi [3 ]
Al-Shetwi, Ali [4 ]
Ker, Pin [5 ]
Begum, R.
Muttaqi, Kashem [3 ,6 ]
机构
[1] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Malaysia
[2] Univ Kebagsaan Malaysia, Dept Elect Engn, Bangi 43600, Malaysia
[3] Univ Kebangsaan Malaysia, Bangi 43600, Malaysia
[4] Fahad Bin Sultan Univ, Tabuk 47721, Saudi Arabia
[5] Univ Tenaga Nas, Inst Sustainable Energy, Coll Engn, Kajang 43000, Malaysia
[6] Univ Wollongong, Dept Elect Comp & Telecommun Engn, Wollongong, NSW 2522, Australia
关键词
Optimal scheduling; Job shop scheduling; Prediction algorithms; Batteries; Artificial neural networks; Training; Schedules; Artificial neural network (ANN)-based backtracking search algorithm (BSA); artificial neural network (ANN); binary scheduling optimization; energy management system; microgrid; power-sharing; virtual power plant (VPP); PARTICLE SWARM OPTIMIZATION; ENERGY MANAGEMENT-SYSTEM; VIRTUAL POWER-PLANT; OPTIMAL OPERATION; MICROGRIDS; NETWORK;
D O I
10.1109/TIA.2021.3100321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article reports an artificial neural network (ANN)-based binary backtracking search algorithm (BBSA) for optimal scheduling controller applied on IEEE 14-bus system for controlling microgrids (MGs) formed virtual power plant (VPP) toward sustainable renewable energy sources (RESs) integration. The model of VPP was simulated and validated based on actual parameters and load data reported in Perlis, Malaysia. BBSA optimization algorithm offers the best binary fitness function to find the best cell. It creates the optimum scheduling using the actual data for wind speed, solar radiation, fuel conditions, battery charging/discharging, and specific hour demand. The developed ANN-based BBSA search for the optimal ANN parameters architecture, e.g., (the number of neurons and learning rate) that enhanced the ANN controller to predict the optimal schedules to regulate power-sharing via prioritizing the utilization of RES in place of the national grid purchases. The results of the optimal on/off status prediction of the 25 DGs showed that the ANN-BBSA gives a mean absolute error (MAE) of 6.2 x 10(-3) with a unity correlation coefficient. The results showed a significant reduction in the cost and emission by 41.88% and 40.7%, respectively. Thus, the developed algorithms reduced the energy cost while delivered reliable power toward grid decarbonization.
引用
收藏
页码:5603 / 5613
页数:11
相关论文
共 36 条
[1]   Artificial Neural Network Based Particle Swarm Optimization for Microgrid Optimal Energy Scheduling [J].
Abdolrasol, Maher G. M. ;
Mohamed, Ramizi ;
Hannan, M. A. ;
Al-Shetwi, Ali Q. ;
Mansor, M. ;
Blaabjerg, Frede .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (11) :12151-12157
[2]   An Optimal Scheduling Controller for Virtual Power Plant and Microgrid Integration Using the Binary Backtracking Search Algorithm [J].
Abdolrasol, Maher G. M. ;
Hannan, Mahammad A. ;
Mohamed, Azah ;
Amiruldin, Ungku Anisa Ungku ;
Abidin, Izham Bin Zainal ;
Uddin, Mohammad Nasir .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (03) :2834-2844
[3]   Hybrid LSA-ANN Based Home Energy Management Scheduling Controller for Residential Demand Response Strategy [J].
Ahmed, Maytham S. ;
Mohamed, Azah ;
Homod, Raad Z. ;
Shareef, Hussain .
ENERGIES, 2016, 9 (09)
[4]   Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm [J].
Aljanad, Ahmed ;
Tan, Nadia M. L. ;
Agelidis, Vassilios G. ;
Shareef, Hussain .
ENERGIES, 2021, 14 (04)
[5]  
[Anonymous], 2014, Climate Change, Mitigation of Climate Change
[6]  
Summary for Policymakers Technical Summary
[7]  
Part of the Working Group III Contribution to the Fifth Asessment Report of the Intergovernmental Panel on Climate Change
[8]   Optimization methods applied to renewable and sustainable energy: A review [J].
Banos, R. ;
Manzano-Agugliaro, F. ;
Montoya, F. G. ;
Gil, C. ;
Alcayde, A. ;
Gomez, J. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (04) :1753-1766
[9]   Smart energy management system for optimal microgrid economic operation [J].
Chen, C. ;
Duan, S. ;
Cai, T. ;
Liu, B. ;
Hu, G. .
IET RENEWABLE POWER GENERATION, 2011, 5 (03) :258-267
[10]   A learning and niching based backtracking search optimisation algorithm and its applications in global optimisation and ANN training [J].
Chen, Debao ;
Lu, Renquan ;
Zou, Feng ;
Li, Suwen ;
Wang, Peng .
NEUROCOMPUTING, 2017, 266 :579-594