Pt-WO3 oxydehydrates fructose to furans in the gas phase

被引:3
|
作者
Carnevali, Davide [1 ]
D'Oliveira, Adrien [1 ]
Rigamonti, Marco G. [1 ]
Cavani, Fabrizio [2 ]
Patience, Gregory S. [1 ]
机构
[1] Polytech Montreal, Chem Engn, CP 6079,Succ CV, Montreal, PQ H3C 3A7, Canada
[2] Univ Bologna, Chim Ind, Viale Risorgimento 4, I-40136 Bologna, Italy
关键词
Fluidized bed; Oxydehydration; Fructose; Platinum; Atomization; 5-hydroxymethyl furfural; 2,5-FURANDICARBOXYLIC ACID; FLUIDIZED-BED; SELECTIVE OXIDATION; AEROBIC OXIDATION; DEHYDRATION; CONVERSION; HMF; 2,5-DIFORMYLFURAN; CATALYSTS; COKE;
D O I
10.1016/j.cej.2021.132337
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bio-feedstocks are destined to replace fossil fuels for specialty chemicals, but current bio-refineries mainly ferment monosaccharides to ethanol, a commodity chemical that is blended with gasoline as a fuel. The market price of biofuels is several-fold lower than specialty chemicals and monomers. Rather than cracking the C6-sugars ethanol, here, develop dehydration and oxydehydration processes to valuable platform C6-chemicals like 5-hydroxymethyl furfural (HMF), 2,5-dimethyl furan (DFF), and 2,5-furandicarboxylic acid. This gas-phase process atomizes an aqueous solution of fructose into a fluidized bed reactor operating at 350 degrees C. The solution forms an aerosol (droplet size of 30 mu m), which contacts the hot Pt-WO3/TiO2 catalyst and reacts to HMF rather than caramelizing. The maximum yield reached 21 % and it increased slightly with temperature, and decreased with increasing catalyst inventory; it was less sensitive to O-2 concentration, Pt loading on the catalyst, liquid feed flow rate, and fructose feed concentration. At the optimal condition, selectivity continued to increase with time even after 3 h reaction. Selectivity to 2,5-diformyl furan reached 42 % at 250 degrees C with HMF as a feedstock.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] H2S sensing material Pt-WO3 nanorods with excellent comprehensive performance
    Yao, Xingyu
    Zhao, Jinbo
    Liu, Jiurong
    Wang, Fenglong
    Wu, Lili
    Meng, Fanjun
    Zhang, Dashun
    Wang, Rutao
    Ahmed, Jahangeer
    Ojha, Kasinath
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [32] Pt-WO3纳米氢敏薄膜的制备及传感特性研究
    王星佺
    卞正兰
    激光与光电子学进展, 2023, 60 (07) : 419 - 424
  • [33] Synergistic Pt-WO3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane
    Chen, Wenyao
    Fu, Wenzhao
    Qian, Gang
    Zhang, Bingsen
    Chen, De
    Duan, Xuezhi
    Zhou, Xinggui
    ISCIENCE, 2020, 23 (03)
  • [34] 电化学模板法制备Pt-WO3纳米线有序阵列
    赵燕
    郭玉国
    张亚利
    焦奎
    青岛大学学报(工程技术版), 2005, (02) : 11 - 14
  • [35] 乙醇在碳载纳米Pt及纳米Pt-WO3电极上的催化氧化
    李小芳
    张亚利
    孙典亭
    青岛大学学报(自然科学版), 2003, (01) : 1 - 6
  • [36] Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell
    Shim, J
    Lee, CR
    Lee, HK
    Lee, JS
    Cairns, EJ
    JOURNAL OF POWER SOURCES, 2001, 102 (1-2) : 172 - 177
  • [37] 乙二醇在Pt-WO3/C上的电催化氧化
    曲微丽
    邬冰
    孙芳
    高颖
    陆天虹
    刘长鹏
    邢巍
    物理化学学报, 2005, (07) : 804 - 807
  • [38] Investigation of electrochemically co-deposited Pt-WO3 catalysts for methanol electro-oxidation.
    Jayaraman, S
    Jaramillo, TF
    McFarland, EW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1094 - U1094
  • [39] INVESTIGATION OF HYDROGEN AND OXYGEN-CHEMISORPTION ON PT-WO3/AL2O3 BY CHROMATOGRAPHIC METHOD
    FARBOTKO, JM
    KUROWSKA, L
    PARYJCZAK, T
    CHEMIA ANALITYCZNA, 1991, 36 (02): : 409 - 413
  • [40] Pt-WO3 porous composite ceramics outstanding for sensing low concentrations of hydrogen in air at room temperature
    Song, Cunbiao
    Wu, Guitai
    Sun, Beilei
    Xiong, Yao
    Zhu, Sheng
    Hu, Yongming
    Gu, Haoshuang
    Wang, Yu
    Chen, Wanping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (09) : 6420 - 6424