The complex Lorenz model: Geometric structure, homoclinic bifurcation and one-dimensional map

被引:13
作者
Vladimirov, AG
Toronov, VY
Derbov, VL
机构
[1] St Petersburg State Univ, Phys Res Inst, St Petersburg 198904, Russia
[2] Saratov State Univ, Dept Phys, Saratov 410071, Russia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1998年 / 8卷 / 04期
关键词
D O I
10.1142/S0218127498000516
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the phase space of the complex Lorenz model has the geometric structure associated with a fiber bundle. Using the equations of motion in the base space of the fiber bundle the surfaces bounding the attractors in this space are found. The homoclinic "butterffy" responsible for the Lorenz-like attractor appearance is shown to correspond to a codimension-two bifurcation. One-dimensional map describing bifurcation phenomena in the complex Lorenz model is constructed.
引用
收藏
页码:723 / 729
页数:7
相关论文
共 18 条
[1]  
GIBBON JD, 1982, PHYSICA D, V5, P108, DOI 10.1016/0167-2789(82)90053-7
[2]  
Kobayashi S, 1969, FDN DIFFERENTIAL GEO
[3]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[4]  
2
[5]   DETUNED LASERS AND THE COMPLEX LORENZ EQUATIONS - SUBCRITICAL AND SUPERCRITICAL HOPF BIFURCATIONS [J].
NING, CZ ;
HAKEN, H .
PHYSICAL REVIEW A, 1990, 41 (07) :3826-3837
[6]   GEOSTROPHIC MOTION [J].
PHILLIPS, NA .
REVIEWS OF GEOPHYSICS, 1963, 1 (02) :123-176
[7]   CHAOS IN A LOW-ORDER MODEL OF MAGNETOCONVECTION [J].
RUCKLIDGE, AM .
PHYSICA D, 1993, 62 (1-4) :323-337
[8]   GENERAL SETTING FOR BERRYS PHASE [J].
SAMUEL, J ;
BHANDARI, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (23) :2339-2342
[9]  
Shil'nikov LP, 1969, SOV MATH DOKL, V10, P1368
[10]  
Shilnikov A., 1991, Selecta Math, V10, P105