Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing

被引:104
作者
Yuan, Kai-Ping [1 ]
Zhu, Li-Yuan [1 ]
Yang, Jia-He [1 ]
Hang, Cheng-Zhou [1 ]
Tao, Jia-Jia [1 ]
Ma, Hong-Ping [1 ]
Jiang, An-Quan [1 ]
Zhang, David Wei [1 ]
Lu, Hong-Liang [1 ]
机构
[1] Fudan Univ, Sch Microelect, Inst Adv Nanodevices, State Key Lab ASIC & Syst, Shanghai 200433, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
NH3 gas sensor; WO3-SnO2; Core shell; Atomic layer deposition; MEMS; THIN-FILMS; SENSOR; WO3; ZNO; TEMPERATURE; COMPOSITES; THICKNESS; ARRAYS; PERFORMANCE; FABRICATION;
D O I
10.1016/j.jcis.2020.02.042
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of high-performance ammonia (NH3) sensor is imperative for monitoring NH3 in the living environment. In this work, to obtain a high performance NH3 gas sensor, structurally well-defined WO3@SnO2 core shell nanosheets with a controllable thickness of SnO2 shell layer have been employed as sensing materials. The prepared core shell nanosheets were used to obtain a miniaturized gas sensor based on micro-electro-mechanical system (MEMS). By tuning the thickness of SnO2 layer via atomic layer deposition, a series of WO3@SnO2 core-shell nanosheets with tunable sensing properties were realized. Particularly, the sensor base on the fabricated WO3@SnO2 nanosheets with 20-nm SnO2 shell layer demonstrated superior gas sensing performance with the highest response (1.55) and selectivity toward 15 ppm NH3 at 200 degrees C. This remarkable enhancement of NH3 sensing ability could be ascribed to the formation of unique WO3-SnO2 core-shell heterojunction structure. The detailed mechanism was elucidated by the heterojunction-depletion model with the help of specific band alignment. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 40 条
  • [1] Gas sensing properties of defect-controlled ZnO-nanowire gas sensor
    Ahn, M. -W.
    Park, K. -S.
    Heo, J. -H.
    Park, J. -G.
    Kim, D. -W.
    Choi, K. J.
    Lee, J. -H.
    Hong, S. -H.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (26)
  • [2] Metal oxide-based gas sensor research: How to?
    Barsan, N.
    Koziej, D.
    Weimar, U.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) : 18 - 35
  • [3] A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing methane
    Bhattacharyya, P.
    Basu, P. K.
    Mondal, B.
    Saha, H.
    [J]. MICROELECTRONICS RELIABILITY, 2008, 48 (11-12) : 1772 - 1779
  • [4] The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor
    Chang, JF
    Kuo, HH
    Leu, IC
    Hon, MH
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2002, 84 (2-3) : 258 - 264
  • [5] MEMS-based hydrogen gas sensors
    DiMeo, Frank, Jr.
    Chen, Ing-Shin
    Chen, Philip
    Neuner, Jeffrey
    Roerhl, Andreas
    Welch, James
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (01) : 10 - 16
  • [6] Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition
    Du, X.
    George, S. M.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2008, 135 (01) : 152 - 160
  • [7] Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose
    Gong, JW
    Chen, QF
    Fei, WF
    Seal, S
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2004, 102 (01) : 117 - 125
  • [8] Smart single-chip gas sensor microsystem
    Hagleitner, C
    Hierlemann, A
    Lange, D
    Kummer, A
    Kerness, N
    Brand, O
    Baltes, H
    [J]. NATURE, 2001, 414 (6861) : 293 - 296
  • [9] Synthesis and gas sensing characteristics of highly crystalline ZnO-SnO2 core-shell nanowires
    Hwang, In-Sung
    Kim, Sun-Jung
    Choi, Joong-Ki
    Choi, Jaewan
    Ji, Hyunjin
    Kim, Gyu-Tae
    Cao, Guozhong
    Lee, Jong-Heun
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2010, 148 (02): : 595 - 600
  • [10] The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas
    Jung, SJ
    Yanagida, H
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1996, 37 (1-2) : 55 - 60