Parametric study on the effect of structural and geotechnical properties on the seismic performance of integral bridges

被引:7
作者
Erhan, Semih [1 ]
Dicleli, Murat [2 ]
机构
[1] Univ Bahrain, Dept Civil Engn, Isa Town, Bahrain
[2] Middle East Tech Univ, Dept Engn Sci, Ankara, Turkey
关键词
Seismic; Integral bridge; Parametric study; Abutment; Backfill; Piles; Soil; ABUTMENT BRIDGES; BEHAVIOR; DESIGN; MODEL;
D O I
10.1007/s10518-017-0123-9
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
In this paper practical techniques are introduced for detailed modeling of soil-pile and soil-abutment interaction effects for integral bridges (IBs). Furthermore, a parametric study is conducted to determine appropriate structural configurations and geotechnical properties to enhance the seismic performance of IBs. For this purpose, numerous nonlinear structural models of a two-span IB including dynamic soil-bridge interaction effects are built. Nonlinear time history analyses (NTHA) of the IB models are then conducted using a set of ground motions with various intensities. In the analyses, the effect of various structural and geotechnical properties such as foundation soil stiffness, backfill compaction level, pile size and orientation, abutment height and thickness are considered. The results of NTHA are then used to assess the effects of these properties on the seismic performance of IBs in terms of member forces and deformations. It is found that while the proposed modeling techniques for IBs are easy to implement in commercially available structural analysis programs, they are also computationally efficient. However, the proposed structural model may not be used to study the soil deformations along the length of the embankment. For the IB and modeling approach under consideration, the bridge seismic response is found to be insensitive to the length of the embankment and damping of the embankment soil. Furthermore, IBs built with shorter and thinner abutments as well as large steel H-piles oriented to bend about their strong axis exhibit better seismic performance.
引用
收藏
页码:4163 / 4191
页数:29
相关论文
共 40 条
  • [1] AASHTO, 2010, LOAD RES FACT DES LR
  • [2] Evaluation on the behavior of abutment-pile connection in integral abutment bridge
    Ahn, Jin-Hee
    Yoon, Ji-Hyun
    Kim, Jong-Hak
    Kim, Sang-Hyo
    [J]. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2011, 67 (07) : 1134 - 1148
  • [3] Calibration of dynamic analysis methods from field test data
    Anandarajah, A
    Zhang, J
    Ealy, C
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2005, 25 (7-10) : 763 - 772
  • [4] [Anonymous], 2007, THESIS
  • [5] [Anonymous], 1970, J STRUCT DIV ASCE
  • [6] [Anonymous], 2009, CROSS SECT X STRUCT
  • [7] API, 2001, REC PRACT PLANN DES
  • [8] State-of-the-Art of Integral Abutment Bridges: Design and Practice
    Arockiasamy, M.
    Butrieng, Narongrit
    Sivakumar, M.
    [J]. JOURNAL OF BRIDGE ENGINEERING, 2004, 9 (05) : 497 - 506
  • [9] Bhowmick A., 2003, INDIAN CONCR J, V77, P1203
  • [10] Seismic soil-pile-structure interaction experiments and analyses
    Boulanger, RW
    Curras, CJ
    Kutter, BL
    Wilson, DW
    Abghari, A
    [J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 1999, 125 (09) : 750 - 759