Space-time fractional derivative operators

被引:43
作者
Baeumer, B [1 ]
Meerschaert, MM
Mortensen, J
机构
[1] Univ Otago, Dept Math & Stat, Dunedin, New Zealand
[2] Univ Nevada, Dept Phys, Reno, NV 89557 USA
[3] Univ Nevada, Dept Math, Reno, NV 89557 USA
关键词
evolution equation; anomalous diffusion; fractional derivative;
D O I
10.1090/S0002-9939-05-07949-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Evolution equations for anomalous diffusion employ fractional derivatives in space and time. Linkage between the space-time variables leads to a new type of fractional derivative operator. This paper develops the mathematical foundations of those operators.
引用
收藏
页码:2273 / 2282
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 1968, LIMIT DISTRIBUTIONS
[2]  
[Anonymous], CHANCE STABILITY STA
[3]  
ARENDT W, 2001, VECTOR VALUED
[4]  
Baeumer B., 2001, FRACT CALCU APPL ANA, V4, P481
[5]   Limit theorem for continuous-time random walks with two time scales [J].
Becker-Kern, P ;
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) :455-466
[6]  
Becker-Kern P, 2004, ANN PROBAB, V32, P730
[7]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[8]   TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS [J].
BLUMEN, A ;
ZUMOFEN, G ;
KLAFTER, J .
PHYSICAL REVIEW A, 1989, 40 (07) :3964-3974
[9]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[10]   A fractional diffusion equation to describe Levy flights [J].
Chaves, AS .
PHYSICS LETTERS A, 1998, 239 (1-2) :13-16