Optimization of H2O2 production in a small-scale off-grid buffer layer flow cell equipped with Cobalt@N-doped graphitic carbon core-shell nanohybrid electrocatalyst

被引:20
作者
Filippi, Jonathan [1 ]
Miller, Hamish A. [1 ]
Nasi, Lucia [2 ]
V. Pagliaro, Maria [1 ]
Marchionni, Andrea [1 ]
Melchionna, Michele [3 ,4 ]
Fornasiero, Paolo [3 ,4 ,5 ]
Vizza, Francesco [1 ]
机构
[1] ICCOM CNR, Via Madonna Piano 10, I-50019 Sesto Fiorentino, FI, Italy
[2] CNR, IMEM Inst, Parco Area Sci 37-A, I-43124 Parma, Italy
[3] Univ Trieste, Ctr Energy, Dept Chem & Pharmaceut Sci, Environm & Transport Giacomo Ciamician, Via L Giorgieri 1, I-34127 Trieste, Italy
[4] Consortium INSTM, Via L Giorgieri 1, I-34127 Trieste, Italy
[5] Univ Trieste, CNR, ICCOM, Via L Giorgieri 1, I-34127 Trieste, Italy
关键词
Electrochemistry; Oxygen reduction reaction; H; 2; O; electrosynthesis; Renewable process; Fuel cells; HYDROGEN-PEROXIDE SYNTHESIS; METAL-FREE ELECTROCATALYSTS; OXYGEN REDUCTION; CATALYSTS; ELECTROSYNTHESIS; NANOTUBES; IRON;
D O I
10.1016/j.mtener.2022.101092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical oxygen reduction (ORR) to hydrogen peroxide (H2O2) is emerging as a sustainable approach for the production of 'green' H2O2 requiring only oxygen and electricity compared to the energy intensive anthraquinone process. High 2e selectivity is required in order to boost faradaic and energy efficiency (FE) of the process. Upon correct tuning of their properties, nitrogen-doped carbon materials are excellent candidates as electrocatalyst for H2O2 electrosynthesis due to their chemical and electrochemical resistance and 2e selectivity. Furthermore, careful cell design and parameter optimization are mandatory for an industrial scale up of the process. In this study, a Cobalt@N-doped graphitic carbon core-shell nanohybrid (CS(Co)-N-GC) electrocatalyst was studied in a buffer layer complete cell equipped with a proton exchange membrane in order to determine the effect of flow rate and potential on process selectivity and energy efficiency. After optimization, the cell was able to produce 0.5 wt% H2O2 with an average FE higher than 40%, an energy consumption lower than 8 kWh/kgH2O2 and a production rate of 1.2 g/h gcat @ 0.3 V vs RHE with the possibility to produce up to 1 wt% H2O2. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 51 条
[1]   A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies [J].
Anantharaj, Sengeni ;
Pitchaimuthu, Sudhagar ;
Noda, Suguru .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2021, 287
[2]   Carboxylated, Fe-Filled Multiwalled Carbon Nanotubes as Versatile Catalysts for O2 Reduction and H2 Evolution Reactions at Physiological pH [J].
Bracamonte, M. Victoria ;
Melchionna, Michele ;
Stopin, Antoine ;
Giulani, Angela ;
Tavagnacco, Claudio ;
Garcia, Yann ;
Fornasiero, Paolo ;
Bonifazi, Davide ;
Prato, Maurizio .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (36) :12769-12777
[3]   Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide [J].
Cai, Wei ;
Wang, Yan ;
Xiao, Changshan ;
Wu, Haobin ;
Yu, Xinyao .
PLASMA SCIENCE & TECHNOLOGY, 2021, 23 (02)
[4]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[5]   Short-term inhibition of SARS-CoV-2 by hydrogen peroxide in persistent nasopharyngeal carriers [J].
Capetti, Amedeo F. ;
Borgonovo, Fabio ;
Morena, Valentina ;
Lupo, Angelica ;
Cossu, Maria Vittoria ;
Passerini, Matteo ;
Dedivitiis, Gianfranco ;
Rizzardini, Giuliano .
JOURNAL OF MEDICAL VIROLOGY, 2021, 93 (03) :1766-1769
[6]   Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon [J].
Chang, Qiaowan ;
Zhang, Pu ;
Mostaghimi, Amir Hassan Bagherzadeh ;
Zhao, Xueru ;
Denny, Steven R. ;
Lee, Ji Hoon ;
Gao, Hongpeng ;
Zhang, Ying ;
Xin, Huolin L. ;
Siahrostami, Samira ;
Chen, Jingguang G. ;
Chen, Zheng .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2 [J].
Chen, Zhihua ;
Chen, Shucheng ;
Siahrostami, Samira ;
Chakthranont, Pongkarn ;
Hahn, Christopher ;
Nordlund, Dennis ;
Dimosthenis, Sokaras ;
Norskov, Jens K. ;
Bao, Zhenan ;
Jaramillo, Thomas F. .
REACTION CHEMISTRY & ENGINEERING, 2017, 2 (02) :239-245
[8]   Metal-Free Catalysts for Oxygen Reduction Reaction [J].
Dai, Liming ;
Xue, Yuhua ;
Qu, Liangti ;
Choi, Hyun-Jung ;
Baek, Jong-Beom .
CHEMICAL REVIEWS, 2015, 115 (11) :4823-4892
[9]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[10]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759