Impact of Missing Data on Parameter Estimation Algorithm of Normal Distribution

被引:0
作者
Wang Feng [1 ]
Wang Shaotong [2 ]
机构
[1] Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou, Peoples R China
[2] Lanzhou Univ, Sch Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
来源
2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA) | 2013年
关键词
Parameter estimation of normal distribution; EM algorithm; Missing data; CONVERGENCE PROPERTIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper propose a simulation approach for the parameter estimation of normal distribution, to analyze the EM algorithm with missing data under different missing rates and complete data maximum likelihood estimation. The simulation result shows that the EM algorithm and the maximum likelihood estimates are almost unanimously when the missing rate is less than 0.25, but the effect of parameter estimation of the EM algorithm gradually deteriorates when the missing rate increases. The result also shows that the EM algorithm is more sensitive to the initial value. In addition, this paper also analyzes the evaluation of the selection of initial value for EM algorithm.
引用
收藏
页码:574 / 578
页数:5
相关论文
共 50 条