Impact of Missing Data on Parameter Estimation Algorithm of Normal Distribution

被引:0
作者
Wang Feng [1 ]
Wang Shaotong [2 ]
机构
[1] Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou, Peoples R China
[2] Lanzhou Univ, Sch Pastoral Agr Sci & Technol, Lanzhou 730000, Peoples R China
来源
2013 2ND INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND MEASUREMENT, SENSOR NETWORK AND AUTOMATION (IMSNA) | 2013年
关键词
Parameter estimation of normal distribution; EM algorithm; Missing data; CONVERGENCE PROPERTIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper propose a simulation approach for the parameter estimation of normal distribution, to analyze the EM algorithm with missing data under different missing rates and complete data maximum likelihood estimation. The simulation result shows that the EM algorithm and the maximum likelihood estimates are almost unanimously when the missing rate is less than 0.25, but the effect of parameter estimation of the EM algorithm gradually deteriorates when the missing rate increases. The result also shows that the EM algorithm is more sensitive to the initial value. In addition, this paper also analyzes the evaluation of the selection of initial value for EM algorithm.
引用
收藏
页码:574 / 578
页数:5
相关论文
共 50 条
  • [21] Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable
    Ibrahim, JG
    Lipsitz, SR
    BIOMETRICS, 1996, 52 (03) : 1071 - 1078
  • [22] Estimation of the Shape Parameter of Weibull Distribution based onType II Censored Data using EM Algorithm
    Kurniawan, A.
    Avicena, N.
    Ana, E.
    SYMPOSIUM ON BIOMATHEMATICS 2019 (SYMOMATH 2019), 2020, 2264
  • [23] Jackknife Maximum Likelihood Estimates for a Bivariate Normal Distribution with Missing Data
    Sinsomboonthong, Juthaphorn
    THAILAND STATISTICIAN, 2011, 9 (02): : 151 - 169
  • [24] Software Reliability Growth Model with Normal Distribution and Its Parameter Estimation
    Okamura, Hiroyuki
    Dohi, Tadashi
    Osaki, Shunji
    2011 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2011, : 411 - 416
  • [25] Maximum likelihood estimation of the correlation coefficient in a bivariate normal model with missing data
    Garren, ST
    STATISTICS & PROBABILITY LETTERS, 1998, 38 (03) : 281 - 288
  • [26] The impact of missing data in the estimation of concentration index: a potential source of bias
    Zhong, Hai
    EUROPEAN JOURNAL OF HEALTH ECONOMICS, 2010, 11 (03) : 255 - 266
  • [27] The impact of missing data in the estimation of concentration index: a potential source of bias
    Hai Zhong
    The European Journal of Health Economics, 2010, 11 : 255 - 266
  • [28] Possibilistic Missing Data Estimation
    Dahabiah, Anas
    Puentes, John
    Solaiman, Basel
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, KNOWLEDGE ENGINEERING AND DATA BASES, 2010, : 173 - +
  • [29] Identification of nonlinear parameter varying systems with missing output data
    Deng, Jing
    Huang, Biao
    AICHE JOURNAL, 2012, 58 (11) : 3454 - 3467
  • [30] Missing Data Restoration Algorithm
    Kazlauskas, Kazys
    Pupeikis, Rimantas
    INFORMATICA, 2014, 25 (02) : 209 - 220