Anisotropic robustness of talc particles after surface modifications probed by atomic force microscopy force spectroscopy

被引:7
|
作者
Dokmai, Vipada [1 ]
Sinthiptharakoon, Kitiphat [2 ]
Phuthong, Witchukorn [3 ]
Pavarajarn, Varong [1 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Ctr Excellence Particle & Mat Proc Technol, Dept Chem Engn, Bangkok 10330, Thailand
[2] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, 111 Thailand Sci Pk,Phahonyothin Rd, Pathum Thani 12120, Thailand
[3] Kasetsart Univ, Fac Sci, Dept Phys, Bangkok 10900, Thailand
来源
PARTICUOLOGY | 2021年 / 58卷
关键词
Talc; Atomic force microscopy; Force spectroscopy; Adhesion; Surface; WETTABILITY; PERFORMANCE; SOLVENTS; FILMS;
D O I
10.1016/j.partic.2021.04.008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
As a versatile mineral, the crystalline hydrated magnesium silicate talcum, or talc, has been widely used in numerous industries from pharmaceutical formulations to composite material designs. Its efficient application as filler/additives incorporates the improvement in concomitant properties within materials, e.g., strength, which involves interactions between talc particles and aqueous/nonaqueous matrices. Successful property enhancement imposes ideal mixing and homogenous adhesion within a talc particle, but they are limited by the coexistence of face and edge surfaces of talc, which exhibit different level of hydrophobicity. Here, using atomic force microscopy force spectroscopy, we showed that although hydrophilic talc particles obtained from acid treatment or aminosilanization better adhered with materials representing a matrix, the anisotropic characters of the two surface types persisted. Conversely, the degree of talc's surface anisotropy reduced with the surface hydrophobization by aliphatic methylsilanization, but followed by the decrease in adhesion. With ten-fold difference in Hamaker constants of the probe/talc surface interacting pairs, we showed that the adhesions resulted from van der Waals interactions that suggested the influence of surface polarity. The insight from this work would provide grounds for strategies to modulate talc's adhesion, hydrophobicity and surface uniformity. (c) 2021 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [41] Atomic force microscopy: Surface forces, adhesion and nanomechanics measurements
    Colton, RJ
    Barger, WR
    Baselt, DR
    Corcoran, SG
    Koleske, DD
    Lee, GU
    FIRST INTERNATIONAL CONGRESS ON ADHESION SCIENCE AND TECHNOLOGY - INVITED PAPERS: FESTSCHRIFT IN HONOR OF DR. K.L. MITTAL ON THE OCCASION OF HIS 50TH BIRTHDAY, 1998, : 21 - 47
  • [42] Simulation of the force-distance curves of atomic force microscopy for proteins by the Connolly surface approach
    Cao, JN
    Pham, DK
    Tonge, L
    Nicolau, DV
    BIOMEMS AND SMART NANOSTRUCTURES, 2001, 4590 : 187 - 194
  • [43] Application of dynamic impedance spectroscopy to atomic force microscopy
    Darowicki, Kazimierz
    Zielinski, Artur
    Kurzydlowski, Krzysztof J.
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2008, 9 (04)
  • [44] Nanomanipulation by atomic force microscopy of carbon nanotubes on a nanostructured surface
    Decossas, S
    Patrone, L
    Bonnot, AM
    Comin, F
    Derivaz, M
    Barski, A
    Chevrier, J
    SURFACE SCIENCE, 2003, 543 (1-3) : 57 - 62
  • [45] Atomic force microscopy-based single virus particle spectroscopy
    Korneev D.V.
    Popova A.V.
    Generalov V.M.
    Zaitsev B.N.
    Biophysics, 2016, 61 (3) : 413 - 419
  • [46] Surface charge of Plasmodium falciparum merozoites as revealed by atomic force microscopy with surface potential spectroscopy
    Akaki M.
    Nagayasu E.
    Nakano Y.
    Aikawa M.
    Parasitology Research, 2002, 88 (1) : 16 - 20
  • [47] Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy
    Attwood, Simon J.
    Choi, Youngjik
    Leonenko, Zoya
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (02): : 3514 - 3539
  • [48] AN ATOMIC-FORCE MICROSCOPY STUDY OF THE WETTING OF AN INORGANIC SURFACE BY LATEX-PARTICLES
    GRANIER, V
    SARTRE, A
    JOANICOT, M
    JOURNAL OF ADHESION, 1993, 42 (04) : 255 - &
  • [49] Correlation between Desorption Force Measured by Atomic Force Microscopy and Adsorption Free Energy Measured by Surface Plasmon Resonance Spectroscopy for Peptide-Surface Interactions
    Wei, Yang
    Latour, Robert A.
    LANGMUIR, 2010, 26 (24) : 18852 - 18861
  • [50] Surface force measurements at kaolinite edge surfaces using atomic force microscopy
    Liu, Jing
    Sandaklie-Nikolova, Linda
    Wang, Xuming
    Miller, Jan D.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 420 : 35 - 40