Anisotropic robustness of talc particles after surface modifications probed by atomic force microscopy force spectroscopy

被引:7
|
作者
Dokmai, Vipada [1 ]
Sinthiptharakoon, Kitiphat [2 ]
Phuthong, Witchukorn [3 ]
Pavarajarn, Varong [1 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Ctr Excellence Particle & Mat Proc Technol, Dept Chem Engn, Bangkok 10330, Thailand
[2] Natl Sci & Technol Dev Agcy NSTDA, Natl Nanotechnol Ctr NANOTEC, 111 Thailand Sci Pk,Phahonyothin Rd, Pathum Thani 12120, Thailand
[3] Kasetsart Univ, Fac Sci, Dept Phys, Bangkok 10900, Thailand
来源
PARTICUOLOGY | 2021年 / 58卷
关键词
Talc; Atomic force microscopy; Force spectroscopy; Adhesion; Surface; WETTABILITY; PERFORMANCE; SOLVENTS; FILMS;
D O I
10.1016/j.partic.2021.04.008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
As a versatile mineral, the crystalline hydrated magnesium silicate talcum, or talc, has been widely used in numerous industries from pharmaceutical formulations to composite material designs. Its efficient application as filler/additives incorporates the improvement in concomitant properties within materials, e.g., strength, which involves interactions between talc particles and aqueous/nonaqueous matrices. Successful property enhancement imposes ideal mixing and homogenous adhesion within a talc particle, but they are limited by the coexistence of face and edge surfaces of talc, which exhibit different level of hydrophobicity. Here, using atomic force microscopy force spectroscopy, we showed that although hydrophilic talc particles obtained from acid treatment or aminosilanization better adhered with materials representing a matrix, the anisotropic characters of the two surface types persisted. Conversely, the degree of talc's surface anisotropy reduced with the surface hydrophobization by aliphatic methylsilanization, but followed by the decrease in adhesion. With ten-fold difference in Hamaker constants of the probe/talc surface interacting pairs, we showed that the adhesions resulted from van der Waals interactions that suggested the influence of surface polarity. The insight from this work would provide grounds for strategies to modulate talc's adhesion, hydrophobicity and surface uniformity. (c) 2021 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:308 / 315
页数:8
相关论文
共 50 条
  • [1] Principles and Applications of Force Spectroscopy Using Atomic Force Microscopy
    Kim, Youngkyu
    Kim, Woong
    Park, Joon Won
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2016, 37 (12) : 1895 - 1907
  • [2] Polysaccharide properties probed with atomic force microscopy
    Abu-Lail, NI
    Camesano, TA
    JOURNAL OF MICROSCOPY, 2003, 212 : 217 - 238
  • [3] Neuron Biomechanics Probed by Atomic Force Microscopy
    Spedden, Elise
    Staii, Cristian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (08): : 16124 - 16140
  • [4] Atomic force microscopy-based force spectroscopy u biological and biomedical applications
    Carvalho, Filomena A.
    Santos, Nuno C.
    IUBMB LIFE, 2012, 64 (06) : 465 - 472
  • [5] Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers
    Unsay, Joseph D.
    Cosentino, Katia
    Garcia-Saez, Ana J.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (101): : 1 - 9
  • [6] Fungal surface remodelling visualized by atomic force microscopy
    Ma, Hui
    Snook, Laelie A.
    Tian, Chunhong
    Kaminskyj, Susan G. W.
    Dahms, Tanya E. S.
    MYCOLOGICAL RESEARCH, 2006, 110 : 879 - 886
  • [7] Surface properties of microbial cells probed at the nanometre scale with atomic force microscopy
    Boonaert, CJP
    Rouxhet, PG
    Dufrêne, YF
    SURFACE AND INTERFACE ANALYSIS, 2000, 30 (01) : 32 - 35
  • [8] Mechanics of spreading cells probed by atomic force microscopy
    Pietuch, Anna
    Janshoff, Andreas
    OPEN BIOLOGY, 2013, 3 (07):
  • [9] Electrostatic proximity force, toner adhesion, and atomic force microscopy of insulating particles
    Schein, LB
    Czarnecki, WS
    JOURNAL OF ELECTROSTATICS, 2005, 63 (6-10) : 699 - 704
  • [10] Diameter measurements of polystyrene particles with atomic force microscopy
    Garnaes, J.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (09)