Single-cell analysis of sodium channel expression in dorsal root ganglion neurons

被引:118
作者
Ho, Cojen [1 ]
O'Leary, Michael E. [1 ]
机构
[1] Thomas Jefferson Univ, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA
关键词
Sodium channel; Dorsal root ganglia; Single-cell RT-PCR; Necl-1; NF200; Peripherin; PRIMARY AFFERENT NEURONS; PRIMARY SENSORY NEURONS; CONDUCTION-VELOCITY; NEUROFILAMENT IMMUNOREACTIVITY; INFLAMMATORY PAIN; RAT; NA(V)1.8; ROLES; NAN; SNS;
D O I
10.1016/j.mcn.2010.08.017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Sensory neurons of the dorsal root ganglia (DRG) express multiple voltage-gated sodium (Na) channels that substantially differ in gating kinetics and pharmacology. Small-diameter (<25 mu m) neurons isolated from the rat DRG express a combination of fast tetrodotoxin-sensitive (TTX-S) and slow TTX-resistant (TTX-R) Na currents while large-diameter neurons (>30 mu m) predominately express fast TTX-S Na current. Na channel expression was further investigated using single-cell RT-PCR to measure the transcripts present in individually harvested DRG neurons. Consistent with cellular electrophysiology, the small neurons expressed transcripts encoding for both TTX-S (Nav1.1, Nav1.2, Nav1.6, and Nav1.7) and TTX-R (Nav1.8 and Nav1.9) Na channels. Nav1.7, Nav1.8 and Nav1.9 were the predominant Na channels expressed in the small neurons. The large neurons highly expressed TTX-S isoforms (Nav1.1, Nav1.6, and Nav1.7) while TTX-R channels were present at comparatively low levels. A unique subpopulation of the large neurons was identified that expressed TTX-R Na current and high levels of Nav1.8 transcript. DRG neurons also displayed substantial differences in the expression of neurofilaments (NF200, peripherin) and Necl-1, a neuronal adhesion molecule involved in myelination. The preferential expression of NF200 and Necl-1 suggests that large-diameter neurons give rise to thick myelinated axons. Small-diameter neurons expressed peripherin, but reduced levels of NF200 and Necl-1, a pattern more consistent with thin unmyelinated axons. Single-cell analysis of Na channel transcripts indicates that TTX-S and TTX-R Na channels are differentially expressed in large myelinated (Nav1.1, Nav1.6, and Nav1.7) and small unmyelinated (Nav1.7, Nav1.8, and Nav1.9) sensory neurons. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:159 / 166
页数:8
相关论文
共 52 条
[1]   A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons [J].
Akopian, AN ;
Sivilotti, L ;
Wood, JN .
NATURE, 1996, 379 (6562) :257-262
[2]   Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2 [J].
Amaya, F ;
Decosterd, I ;
Samad, TA ;
Plumpton, C ;
Tate, S ;
Mannion, RJ ;
Costigan, M ;
Woolf, CJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2000, 15 (04) :331-342
[3]   Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture [J].
Baker, MD ;
Bostock, H .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (03) :1503-1513
[4]   Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain [J].
Black, JA ;
Liu, SJ ;
Tanaka, M ;
Cummins, TR ;
Waxman, SG .
PAIN, 2004, 108 (03) :237-247
[5]   Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs [J].
Black, JA ;
DibHajj, S ;
McNabola, K ;
Jeste, S ;
Rizzo, MA ;
Kocsis, JD ;
Waxman, SG .
MOLECULAR BRAIN RESEARCH, 1996, 43 (1-2) :117-131
[6]  
Blair NT, 2002, J NEUROSCI, V22, P10277
[7]   3 TYPES OF SODIUM-CHANNELS IN ADULT-RAT DORSAL-ROOT GANGLION NEURONS [J].
CAFFREY, JM ;
ENG, DL ;
BLACK, JA ;
WAXMAN, SG ;
KOCSIS, JD .
BRAIN RESEARCH, 1992, 592 (1-2) :283-297
[8]   Functional role of the C-terminus of voltage-gated sodium channel Nav1.8 [J].
Choi, JS ;
Tyrrell, L ;
Waxman, SG ;
Dib-Hajj, SD .
FEBS LETTERS, 2004, 572 (1-3) :256-260
[9]   Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons [J].
Coste, B ;
Osorio, N ;
Padilla, F ;
Crest, M ;
Delmas, P .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2004, 26 (01) :123-134
[10]   The roles of sodium channels in nociception: Implications for mechanisms of pain [J].
Cummins, Theodore R. ;
Sheets, Patrick L. ;
Waxman, Stephen G. .
PAIN, 2007, 131 (03) :243-257