Spatio-temporal Prediction of the Malaria Transmission Risk in Minab District (Hormozgan Province, Southern Iran)

被引:4
作者
Salahi-Moghaddam, Abdolreza [1 ]
Turki, Habibollah [1 ]
Yeryan, Masoud [2 ]
Fuentes, Marius, V [3 ]
机构
[1] Hormozgan Univ Med Sci, Infect & Trop Dis Res Ctr, Hormozgan Hlth Inst, Bandar Abbas, Hormozgan, Iran
[2] Minab Hlth Ctr, Malaria Vector Unit, 17th Sharivar Ave, Minab, Hormozgan, Iran
[3] Univ Valencia, Fac Farm, Dept Farm & Tecnol Farmaceut & Parasitol, Parasites & Hlth Res Grp, Av Vicent Andres Estelles S-N, Valencia 46100, Spain
关键词
Anopheline larvae; Environmental risk; GIS; Hormozgan province; Iran; Malaria; ANOPHELES-STEPHENSI; SITUATION ANALYSIS; LARVAL HABITATS; ENDEMIC AREA; STRATIFICATION; VECTORS;
D O I
10.1007/s11686-022-00598-2
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Introduction Malaria is the most important parasitic disease in tropical and subtropical regions, with more than 240 million cases reported annually. In Iran, indigenous cases occur in its south-eastern region. The aim of this study is to assess the environmental risk of malaria transmission in an endemic area of southern Iran. Methods The study was carried out in Minab district (Hormozgan province, southern Iran), with the aim to assess the environmental risk of malaria, based on a spatio-temporal study, using Growing Degree Days (GDD)-based predictions, larval habitat ecology, MaxEnt spatial predictions and malaria transmission data. Results The Gradient Model Risk index showed the highest malaria transmission risk period to be during January-April and October-December. The ecological conditions of water bodies of larval habitats of the four vector species (Anopheles culicifacies, A. dthali, A. fluviatilis and A. stephensi) were assessed, with A. stephensi being the most prevalent and the most widely distributed species. Conclusion These findings, together with the MaxEnt Anopheles predictive distribution models, allowed identifying villages in danger of malaria transmission in Minab district. This spatio-temporal prediction of malaria transmission risk should be incorporated in the design of malaria control initiatives towards a local malaria early warning system. Moreover, the proposed transmission risk model can be extrapolated, at local scale, to other malaria endemic areas of tropical and subtropical regions.
引用
收藏
页码:1500 / 1513
页数:14
相关论文
共 47 条
  • [21] Spatio-temporal prevalence of malaria and anaemia in relation to agro-ecosystems in Mvomero district, Tanzania
    Rumisha, Susan F.
    Shayo, Elizabeth H.
    Mboera, Leonard E. G.
    MALARIA JOURNAL, 2019, 18 (1)
  • [22] Spatio-temporal prevalence of malaria and anaemia in relation to agro-ecosystems in Mvomero district, Tanzania
    Susan F. Rumisha
    Elizabeth H. Shayo
    Leonard E. G. Mboera
    Malaria Journal, 18
  • [23] Modeling Spatio-temporal Malaria Risk Using Remote Sensing and Environmental Factors
    Mazher, Muhammad Haris
    Iqbal, Javed
    Mahboob, Muhammad Ahsan
    Atif, Iqra
    IRANIAN JOURNAL OF PUBLIC HEALTH, 2018, 47 (09) : 1280 - 1290
  • [24] LONGITUDINAL STUDY OF THE SPECIES COMPOSITION AND SPATIO-TEMPORAL ABUNDANCE OF ANOPHELES LARVAE IN A MALARIA RISK AREA IN ARGENTINA
    Dantur Juri, Maria J.
    Galante, Guillermina B.
    Zaidenberg, Mario
    Almiron, Walter R.
    Claps, Guillermo L.
    Santana, Mirta
    FLORIDA ENTOMOLOGIST, 2014, 97 (03) : 1167 - 1181
  • [25] Spatio-temporal assessment of hotspots and seasonally adjusted environmental risk factors of malaria prevalence
    Asori, Moses
    Musah, Ali
    Odei, Julius
    Morgan, Anthony Kwame
    Zurikanen, Iddrisu
    APPLIED GEOGRAPHY, 2023, 160
  • [26] Understudied Anophelines Contribute to Malaria Transmission in a Low-Transmission Setting in the Choma District, Southern Province, Zambia
    Gebhardt, Mary E.
    Searle, Kelly M.
    Kobayashi, Tamaki
    Shields, Timothy M.
    Hamapumbu, Harry
    Simubali, Limonty
    Mudenda, Twig
    Thuma, Philip E.
    Stevenson, Jennifer C.
    Moss, William J.
    Norris, Douglas E.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2022, 106 (05) : 1406 - 1413
  • [27] Spatio-temporal analysis and prediction of landscape patterns and change processes in the Central Zagros region, Iran
    Japelaghi, Mohsen
    Gholamalifard, Mehdi
    Shayesteh, Kamran
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2019, 15
  • [28] Hepatitis C and G Virus Infection Prevalence Among Hemodialysis Patients and Associated Risk Factors in the Hormozgan Province of Southern Iran
    Kheirabad, Ali Kargar
    Bahri, Fahime
    Kargar, Mohammad
    Ghasemzadeh, Iman
    HEPATITIS MONTHLY, 2016, 16 (10)
  • [29] Spatio-temporal analysis of malaria vector density from baseline through intervention in a high transmission setting
    Victor A. Alegana
    Simon P. Kigozi
    Joaniter Nankabirwa
    Emmanuel Arinaitwe
    Ruth Kigozi
    Henry Mawejje
    Maxwell Kilama
    Nick W. Ruktanonchai
    Corrine W. Ruktanonchai
    Chris Drakeley
    Steve W. Lindsay
    Bryan Greenhouse
    Moses R. Kamya
    David L. Smith
    Peter M. Atkinson
    Grant Dorsey
    Andrew J. Tatem
    Parasites & Vectors, 9
  • [30] Spatio-temporal analysis of malaria vector density from baseline through intervention in a high transmission setting
    Alegana, Victor A.
    Kigozi, Simon P.
    Nankabirwa, Joaniter
    Arinaitwe, Emmanuel
    Kigozi, Ruth
    Mawejje, Henry
    Kilama, Maxwell
    Ruktanonchai, Nick W.
    Ruktanonchai, Corrine W.
    Drakeley, Chris
    Lindsay, Steve W.
    Greenhouse, Bryan
    Kamya, Moses R.
    Smith, David L.
    Atkinson, Peter M.
    Dorsey, Grant
    Tatem, Andrew J.
    PARASITES & VECTORS, 2016, 9 : 1 - 10