Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions

被引:4
|
作者
Le Gia, Q. T. [1 ]
Stephan, E. P. [2 ,3 ]
Tran, T. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, QUEST Ctr Quantum Engn & Space Time Res, D-30167 Hannover, Germany
基金
澳大利亚研究理事会;
关键词
Exterior Neumann problem; Boundary integral equation; Prolate spheroid; Radial basis function; POSITIVE-DEFINITE FUNCTIONS;
D O I
10.1007/s10444-010-9145-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the exterior Neumann problem of the Laplacian with boundary condition on a prolate spheroid. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet-to-Neumann map. Our approach is particularly suitable for handling of scattered data, e.g. satellite data. We also propose a preconditioning technique based on domain decomposition method to deal with ill-conditioned matrices arising from the approximation problem.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 50 条
  • [41] DATA APPROXIMATION USING POLYHARMONIC RADIAL BASIS FUNCTIONS
    Segeth, Karel
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 20, 2021, : 129 - 138
  • [42] Stabilized interpolation using radial basis functions augmented with selected radial polynomials
    Pooladi, Fatemeh
    Larsson, Elisabeth
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [43] Meshless Galerkin methods using radial basis functions
    Wendland, H
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1521 - 1531
  • [44] A note on the meshless method using radial basis functions
    Duan, Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (01) : 66 - 75
  • [45] Preconditioning for radial basis functions with domain decomposition methods
    Ling, LV
    Kansa, EJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (13) : 1413 - 1427
  • [46] A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING
    Jin, Boram
    Lee, Yonghae
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 321 - 332
  • [47] Meshless methods based on collocation with radial basis functions
    X. Zhang
    K. Z. Song
    M. W. Lu
    X. Liu
    Computational Mechanics, 2000, 26 : 333 - 343
  • [48] Preconditioners for pseudodifferential equations on the sphere with radial basis functions
    Tran, T.
    Le Gia, Q. T.
    Sloan, I. H.
    Stephan, E. P.
    NUMERISCHE MATHEMATIK, 2010, 115 (01) : 141 - 163
  • [49] Efficient preconditioning for image reconstruction with radial basis functions
    Magoules, Frederic
    Diago, Luis A.
    Hagiwara, Ichiro
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (05) : 320 - 327
  • [50] Source localization of subtopographies decomposed by radial basis functions
    Duru, Adil Deniz
    Ademoglu, Ahmet
    MEDICAL IMAGING AND AUGMENTED REALITY, PROCEEDINGS, 2008, 5128 : 108 - 115