Solution to the Neumann problem exterior to a prolate spheroid by radial basis functions

被引:4
|
作者
Le Gia, Q. T. [1 ]
Stephan, E. P. [2 ,3 ]
Tran, T. [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, QUEST Ctr Quantum Engn & Space Time Res, D-30167 Hannover, Germany
基金
澳大利亚研究理事会;
关键词
Exterior Neumann problem; Boundary integral equation; Prolate spheroid; Radial basis function; POSITIVE-DEFINITE FUNCTIONS;
D O I
10.1007/s10444-010-9145-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the exterior Neumann problem of the Laplacian with boundary condition on a prolate spheroid. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet-to-Neumann map. Our approach is particularly suitable for handling of scattered data, e.g. satellite data. We also propose a preconditioning technique based on domain decomposition method to deal with ill-conditioned matrices arising from the approximation problem.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 50 条
  • [21] DYNAMIC PROGRAMMING USING RADIAL BASIS FUNCTIONS
    Junge, Oliver
    Schreiber, Alex
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4439 - 4453
  • [22] Analysis of thick plates by radial basis functions
    A. J. M. Ferreira
    C. M. C. Roque
    Acta Mechanica, 2011, 217 : 177 - 190
  • [23] Plating thickness evaluation with the radial basis functions
    Kosaka, Daigo
    Kakishita, Kazuhiko
    Nara, Takaaki
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2020, 64 (1-4) : 1081 - 1089
  • [24] REGULARIZED MULTIDIMENSIONAL SCALING WITH RADIAL BASIS FUNCTIONS
    Jahan, Sohana
    Qi, Hou-Duo
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (02) : 543 - 563
  • [25] Space-time radial basis functions
    Myers, DE
    De Iaco, S
    Posa, D
    De Cesare, L
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) : 539 - 549
  • [26] Biharmonic navigation using radial basis functions
    Fan, Xu-Qian
    Gong, Wenyong
    ROBOTICA, 2022, 40 (03) : 599 - 610
  • [27] Implicit Surface Reconstruction with Radial Basis Functions
    Yang, Jun
    Wang, Zhengning
    Zhu, Changqian
    Peng, Qiang
    COMPUTER VISION AND COMPUTER GRAPHICS, 2008, 21 : 5 - +
  • [28] VOLATILITY SMILE INTERPOLATION WITH RADIAL BASIS FUNCTIONS
    Donfack, Hermann Azemtsa
    Soh, Celestin Wafo
    Kotze, Antonie
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2022, 25 (7-8)
  • [29] STABLE COMPUTATIONS WITH GAUSSIAN RADIAL BASIS FUNCTIONS
    Fornberg, Bengt
    Larsson, Elisabeth
    Flyer, Natasha
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 869 - 892
  • [30] Some issues on interpolation matrices of locally scaled radial basis functions
    Lee, Mun Bae
    Lee, Yeon Ju
    Sunwoo, Hasik
    Yoon, Jungho
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (10) : 5011 - 5014