Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis

被引:94
作者
Wu, Angjian [1 ]
Yang, Ji [2 ,4 ]
Xu, Bo [3 ]
Wu, Xiao-Yu [5 ]
Wang, Yuhang [6 ]
Lv, Xingjie [1 ]
Ma, Yichen [7 ]
Xu, Aoni [1 ]
Zheng, Jiageng [1 ]
Tan, Qinhuai [1 ]
Peng, Yaqi [1 ]
Qi, Zhifu [1 ]
Qi, Haifeng [2 ]
Li, Jianfeng [4 ]
Wang, Yaolin [7 ]
Harding, Jonathan [7 ]
Tu, Xin [7 ]
Wang, Aiqin [2 ]
Yan, Jianhua [1 ]
Li, Xiaodong [1 ]
机构
[1] Zhejiang Univ, Dept Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Chinese Acad Sci, Collaborat Innovat Ctr Chem Energy Mat iChEM, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[3] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA
[4] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChEM, Xiamen 361005, Peoples R China
[5] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[6] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[7] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
基金
中国国家自然科学基金;
关键词
Ammonia synthesis; Plasma-electrocatalysis; Co single atom; Reaction mechanism; NITROGEN-FIXATION; HABER-BOSCH; REDUCTION; CATALYSTS; IDENTIFICATION;
D O I
10.1016/j.apcatb.2021.120667
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Industrial ammonia synthesis revolutionized global agriculture and industry, but it consumes significant amounts of energy and releases vast quantities of CO2. One alternative, electrocatalytic nitrogen reduction generally suffers from a low ammonia yield rate and poor selectivity. Here, a tandem "plasma-electrocatalysis" strategy was proposed to harvest ammonia from the air. An ammonia yield rate (similar to 1.43 mg(NH3 )cm(-2) h(-1)) with almost 100% faradaic efficiency was achieved during over 50 hours of stable operation at -0.33 V vs. RHE. The ammonia yield rate reached up to similar to 3.0 mg(NH3) cm(-2) h(-1) with a faradaic efficiency of similar to 62% at -0.63 V vs. RHE. This marked performance is achieved by separating activation of stable nitrogen molecules via non-thermal plasma, followed by selective ammonia synthesis via a cobalt single-atom electrocatalyst. This strategy may rival the Haber-Bosch process and the aspirational electrochemical nitrogen reduction at a distributed small-size ammonia production based on a techno-economic analysis.
引用
收藏
页数:10
相关论文
共 64 条
[1]   Plasma-catalysis coupling for CH4 and CO2 conversion over mesoporous macroporous Al2O3: Influence of the physico-chemical properties [J].
Bouchoul, Nassim ;
Touati, Houcine ;
Fourre, Elodie ;
Clacens, Jean-Marc ;
Batonneau-Gener, Isabelle ;
Batiot-Dupeyrat, Catherine .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 295 (295)
[2]   Plasma-induced redox reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation [J].
Boyom-Tatchemo, Franck W. ;
Devred, Francois ;
Ndiffo-Yemeli, G. ;
Laminsi, Samuel ;
Gaigneaux, Eric M. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 260
[3]   Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution [J].
Cao, Linlin ;
Luo, Qiquan ;
Liu, Wei ;
Lin, Yue ;
Liu, Xiaokang ;
Cao, Yuanjie ;
Zhang, Wei ;
Wu, Yuen ;
Yang, Jinlong ;
Yao, Tao ;
Wei, Shiqiang .
NATURE CATALYSIS, 2019, 2 (02) :134-141
[4]   Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst [J].
Chen, Gao-Feng ;
Yuan, Yifei ;
Jiang, Haifeng ;
Ren, Shi-Yu ;
Ding, Liang-Xin ;
Ma, Lu ;
Wu, Tianpin ;
Lu, Jun ;
Wang, Haihui .
NATURE ENERGY, 2020, 5 (08) :605-613
[5]   Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc [J].
Chen, Hang ;
Wu, Angjian ;
Mathieu, Stephanie ;
Gao, Peihan ;
Li, Xiaodong ;
Xu, Bo Z. ;
Yan, Jianhua ;
Tu, Xin .
PLASMA PROCESSES AND POLYMERS, 2021, 18 (07)
[6]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[7]   A review of the existing and alternative methods for greener nitrogen fixation [J].
Cherkasov, N. ;
Ibhadon, A. O. ;
Fitzpatrick, P. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2015, 90 :24-33
[8]   Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline [J].
Choi, Changhyeok ;
Back, Seoin ;
Kim, Na-Young ;
Lim, Juhyung ;
Kim, Yong-Hyun ;
Jung, Yousung .
ACS CATALYSIS, 2018, 8 (08) :7517-7525
[9]   Identification and elimination of false positives in electrochemical nitrogen reduction studies [J].
Choi, Jaecheol ;
Suryanto, Bryan H. R. ;
Wang, Dabin ;
Du, Hoang-Long ;
Hodgetts, Rebecca Y. ;
Vallana, Federico M. Ferrero ;
MacFarlane, Douglas R. ;
Simonov, Alexandr N. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Filling the nitrogen vacancies with sulphur dopants in graphitic C3N4 for efficient and robust electrocatalytic nitrogen reduction [J].
Chu, Ke ;
Li, Qing-qing ;
Liu, Ya-ping ;
Wang, Jing ;
Cheng, Yong-hua .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267