Double actuator unit with planetary gear train for a safe manipulator

被引:37
作者
Kim, Byeong-Sang [1 ]
Park, Jung-Jun [1 ]
Song, Jae-Bok [2 ]
机构
[1] Korea Univ, Dept Mech Engn, Seoul 136701, South Korea
[2] Korea Univ, Dept Engn Mech, Seoul, South Korea
来源
PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10 | 2007年
关键词
D O I
10.1109/ROBOT.2007.363139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control system using a force-torque sensor or the indirect impedance control scheme. Although these methods have been successfully applied to many applications, simultaneous control of force and position cannot be achieved. Furthermore, collision safety has been of primary concern in recent years with emergence of service robots in direct contact with humans. To cope with such problems, redundant actuation has been used to enhance the performance of a position/force controller. In this paper, the novel design of a double actuator unit (DAU) composed of double actuators and a planetary gear train is proposed to provide the capability of simultaneous control of position and force as well as the improved collision safety. Since one actuator controls position and the other actuator modulates stiffness, DAU can control the position and stiffness simultaneously at the same joint. The torque exerted on the joint can be estimated without an expensive torque/force sensor. DAU is capable of detecting dynamic collision by monitoring the speed of the stiffness modulator. Upon detection of dynamic collision, DAU immediately reduces its joint stiffness according to the collision magnitude, thus providing the optimum collision safety. It is shown from various experiments that DAU can provide good performance of position tracking, force estimation and collision safety.
引用
收藏
页码:1146 / +
页数:2
相关论文
共 9 条
[1]  
IKEURA R, 1995, HUMAN ENG, V31, P355
[2]  
Pratt G. A., 1995, P IEEE RSJ INT C INT, V1, P399
[3]  
Pratt J, 1997, IEEE INT CONF ROBOT, P193, DOI 10.1109/ROBOT.1997.620037
[4]   HUMAN PERCEPTION OF ROBOT SAFE SPEED AND IDLE TIME [J].
RAHIMI, M ;
KARWOWSKI, W .
BEHAVIOUR & INFORMATION TECHNOLOGY, 1990, 9 (05) :381-389
[5]  
Tonietti G, 2005, IEEE INT CONF ROBOT, P526
[6]  
TONIETTI G, 2006, EXPT ROBOTICS, V9, P311
[7]  
Versace J., 1971, Proceedings of the 15th Stapp Car Crash Conference, DOI 10.4271/710881
[8]  
Yamada Y, 1996, RO-MAN '96 - 5TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN COMMUNICATION, PROCEEDINGS, P59, DOI 10.1109/ROMAN.1996.568748
[9]   A new actuation approach for human friendly robot design [J].
Zinn, M ;
Khatib, O ;
Roth, B .
2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, :249-254