Spark plasma sintering of ZrO2-Al2O3 nanocomposites at low temperatures aided by amorphous powders

被引:15
作者
Xu, Xiqing [1 ]
Tao, Tiyue [1 ]
Zhang, Xin [1 ]
Cao, Zhanzhi [1 ]
Huang, Di [1 ]
Liang, Hongchan [1 ]
Hu, Yinglu [1 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710061, Peoples R China
关键词
Spark plasma sintering; Amorphous powders; Sinterability; ZrO2-Al2O3; Nanocomposites; MECHANICAL-PROPERTIES; COMPOSITES; DENSIFICATION; CERAMICS; ALUMINA; AL2O3; Y2O3; MICROSTRUCTURE; FABRICATION;
D O I
10.1016/j.ceramint.2019.10.160
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In present work, ZrO2-5 wt% Al2O3 and ZrO2-10 wt% Al2O3 nanocomposites are fabricated through spark plasma sintering. Al2O3-ZrO2 amorphous powders and polycrystal Al2O3 powders and are doped in the polycrystalline ZrO2 powders, respectively. When doped with amorphous powders, the sintering of ZrO2-Al2O3 nanocomposites is promoted, and ZrO2-5 wt% Al2O3 and ZrO2-10 wt% Al2O3 nanocomposites with relative densities of 99% are obtained after spark plasma sintering at 1200 degrees C; however, when sintering of polycrystalline ZrO(2 )and polycrystalline Al2O3 powders, the relative densities are merely 93%. The enhanced sinterability is due to the metastability and phase transformation of the amorphous powders, which act as sintering aids. The nanocomposites with near-theoretical density show refined microstructure with homogenous mixture of ZrO(2)and Al2O3 grains, which further leads to excellent mechanical properties. This article provides new ideas for low-temperature sintering of nanocomposites via using doping amorphous powders.
引用
收藏
页码:4365 / 4370
页数:6
相关论文
共 30 条
[1]   Influence of Al2O3 whisker concentration on flexural strength of Al2O3(w)-ZrO2 (TZ-3Y) composite [J].
Abdullah, Muhammad ;
Ahmad, Jamil ;
Mehmood, Mazhar .
CERAMICS INTERNATIONAL, 2012, 38 (08) :6517-6523
[2]  
[Anonymous], 2003, ANN BOOK ASTM STAND, V15.06
[3]  
[Anonymous], 2016, ANN BOOK ASTM SOC TE, V15
[4]   Effect of initial particle packing on the sintering of nanostructured transition alumina [J].
Azar, M. ;
Palmero, P. ;
Lombardi, M. ;
Garnier, V. ;
Montanaro, L. ;
Fantozzi, G. ;
Chevalier, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (06) :1121-1128
[5]   YTTRIUM ALPHA-SIALON CERAMICS BY HOT ISOSTATIC PRESSING AND POST-HOT ISOSTATIC PRESSING [J].
BARTEK, A ;
EKSTROM, T ;
HERBERTSSON, H ;
JOHANSSON, T .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1992, 75 (02) :432-439
[6]   Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review [J].
Bose, Susmita ;
Tarafder, Solaiman .
ACTA BIOMATERIALIA, 2012, 8 (04) :1401-1421
[7]   Densification and properties of zirconia prepared by three different sintering techniques [J].
Dahl, P. ;
Kaus, I. ;
Zhao, Z. ;
Johnsson, M. ;
Nygren, M. ;
Wiik, K. ;
Grande, T. ;
Einarsrud, M.-A. .
CERAMICS INTERNATIONAL, 2007, 33 (08) :1603-1610
[8]  
Freim J, 1998, J AM CERAM SOC, V81, P1773, DOI 10.1111/j.1151-2916.1998.tb02547.x
[9]   Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering [J].
Ghasali, Ehsan ;
Alizadeh, Masoud ;
Pakseresht, Amir Hossein ;
Ebadzadeh, Touradj .
JOURNAL OF ASIAN CERAMIC SOCIETIES, 2017, 5 (04) :472-478
[10]  
Kleinlogel C, 2001, ADV MATER, V13, P1081, DOI 10.1002/1521-4095(200107)13:14<1081::AID-ADMA1081>3.0.CO