Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams

被引:151
作者
Shen, Yiqiu [1 ]
Shamout, Farah E. [2 ]
Oliver, Jamie R. [3 ]
Witowski, Jan [3 ]
Kannan, Kawshik [4 ]
Park, Jungkyu [5 ]
Wu, Nan [1 ]
Huddleston, Connor [3 ]
Wolfson, Stacey [3 ]
Millet, Alexandra [3 ]
Ehrenpreis, Robin [3 ]
Awal, Divya [3 ]
Tyma, Cathy [3 ]
Samreen, Naziya [3 ]
Gao, Yiming [3 ]
Chhor, Chloe [3 ]
Gandhi, Stacey [3 ]
Lee, Cindy [3 ]
Kumari-Subaiya, Sheila [3 ]
Leonard, Cindy [3 ]
Mohammed, Reyhan [3 ]
Moczulski, Christopher [3 ]
Altabet, Jaime [3 ]
Babb, James [3 ]
Lewin, Alana [3 ]
Reig, Beatriu [3 ]
Moy, Linda [3 ,5 ]
Heacock, Laura [3 ]
Geras, Krzysztof J. [1 ,3 ,5 ]
机构
[1] NYU, Ctr Data Sci, New York, NY 10013 USA
[2] NYU Abu Dhabi, Engn Div, Abu Dhabi, U Arab Emirates
[3] NYU, Dept Radiol, Grossman Sch Med, New York, NY 10013 USA
[4] NYU, Courant Inst, Dept Comp Sci, New York, NY USA
[5] NYU, Grossman Sch Med, Vilcek Inst Grad Biomed Sci, New York, NY 10013 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COMPUTER-AIDED DIAGNOSIS; SCREENING MAMMOGRAPHY; CANCER; WOMEN; CLASSIFICATION; PERFORMANCE; LESIONS; RISK; MRI; AGE;
D O I
10.1038/s41467-021-26023-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultrasound is an important imaging modality for the detection and characterization of breast cancer, but it has been noted to have high false-positive rates. Here, the authors present an artificial intelligence system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound imaging. Though consistently shown to detect mammographically occult cancers, breast ultrasound has been noted to have high false-positive rates. In this work, we present an AI system that achieves radiologist-level accuracy in identifying breast cancer in ultrasound images. Developed on 288,767 exams, consisting of 5,442,907 B-mode and Color Doppler images, the AI achieves an area under the receiver operating characteristic curve (AUROC) of 0.976 on a test set consisting of 44,755 exams. In a retrospective reader study, the AI achieves a higher AUROC than the average of ten board-certified breast radiologists (AUROC: 0.962 AI, 0.924 +/- 0.02 radiologists). With the help of the AI, radiologists decrease their false positive rates by 37.3% and reduce requested biopsies by 27.8%, while maintaining the same level of sensitivity. This highlights the potential of AI in improving the accuracy, consistency, and efficiency of breast ultrasound diagnosis.
引用
收藏
页数:13
相关论文
共 69 条
[1]  
Al-Dhabyani W, 2019, INT J ADV COMPUT SC, V10, P618
[2]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[3]   Comparison of Recommendations for Screening Mammography Using CISNET Models [J].
Arleo, Elizabeth Kagan ;
Hendrick, R. Edward ;
Helvie, Mark A. ;
Sickles, Edward A. .
CANCER, 2017, 123 (19) :3673-3680
[4]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[5]   Impact of Data Presentation on Physician Performance Utilizing Artificial Intelligence-Based Computer-Aided Diagnosis and Decision Support Systems [J].
Barinov, L. ;
Jairaj, A. ;
Becker, M. ;
Seymour, S. ;
Lee, E. ;
Schram, A. ;
Lane, E. ;
Goldszal, A. ;
Quigley, D. ;
Paster, L. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) :408-416
[6]   Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study [J].
Becker, Anton S. ;
Mueller, Michael ;
Stofel, Elina ;
Marcon, Magda ;
Ghafoor, Soleen ;
Boss, Andreas .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1083)
[7]   Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer [J].
Berg, Wendie A. ;
Blume, Jeffrey D. ;
Cormack, Jean B. ;
Mendelson, Ellen B. ;
Lehrer, Daniel ;
Bohm-Velez, Marcela ;
Pisano, Etta D. ;
Jong, Roberta A. ;
Evans, W. Phil ;
Morton, Marilyn J. ;
Mahoney, Mary C. ;
Larsen, Linda Hovanessian ;
Barr, Richard G. ;
Farria, Dione M. ;
Marques, Helga S. ;
Boparai, Karan .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2008, 299 (18) :2151-2163
[8]   Ultrasound as the Primary Screening Test for Breast Cancer: Analysis From ACRIN 6666 [J].
Berg, Wendie A. ;
Bandos, Andriy I. ;
Mendelson, Ellen B. ;
Lehrer, Daniel ;
Jong, Roberta A. ;
Pisano, Etta D. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2016, 108 (04)
[9]   Detection of Breast Cancer With Addition of Annual Screening Ultrasound or a Single Screening MRI to Mammography in Women With Elevated Breast Cancer Risk [J].
Berg, Wendie A. ;
Zhang, Zheng ;
Lehrer, Daniel ;
Jong, Roberta A. ;
Pisano, Etta D. ;
Barr, Richard G. ;
Boehm-Velez, Marcela ;
Mahoney, Mary C. ;
Evans, W. Phil, III ;
Larsen, Linda H. ;
Morton, Marilyn J. ;
Mendelson, Ellen B. ;
Farria, Dione M. ;
Cormack, Jean B. ;
Marques, Helga S. ;
Adams, Amanda ;
Yeh, Nolin M. ;
Gabrielli, Glenna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2012, 307 (13) :1394-1404
[10]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281