Jacobi fields in the Riemannian geometry of quantum computation

被引:1
作者
Brandt, Howard E. [1 ]
机构
[1] USA, Res Lab, Adelphi, MD USA
来源
QUANTUM INFORMATION AND COMPUTATION VIII | 2010年 / 7702卷
关键词
Riemannian geometry; geodesics; Jacobi fields;
D O I
10.1117/12.849648
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the Riemannian geometry of quantum computation, the quantum evolution is described in terms of the special unitary group of n-qubit unitary operators with unit determinat. To elaborate on some aspects of the methodology, the generic Jacobi equation and lifted Jacobi equation, together with solutions on the group manifold, are explicitly derived. This is important for investigations of the global characteristics of geodesic paths in the group manifold, and the determination of optimal quantum circuits for carrying out a quantum computation.
引用
收藏
页数:8
相关论文
共 8 条
  • [1] Berger M., 2003, A Panoramic View of Riemannian Geometry
  • [2] DOWLING MR, 2008, QUANTUM INF COMPUT, V8
  • [3] Greiner W., 1996, FIELD QUANTIZATION, V219
  • [4] Lee J. M., 2018, Riemannian Manifolds, V2nd
  • [5] Petersen P., 2006, GRADUATE TEXTS MATH, Vsecond
  • [6] Steeb W., 2006, GRAVITATION
  • [7] WASSERMAN RH, 2004, TENSORS MANIFOLDS
  • [8] WEINBERG S, 1995, QUANTUM THEORY FIE 1, V143