Detection Through Deep Neural Networks: A Reservoir Computing Approach for MIMO-OFDM Symbol Detection

被引:5
作者
Bai, Kangjun [1 ]
Liu, Lingjia [1 ]
Zhou, Zhou [1 ]
Yi, Yang [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
来源
2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD) | 2020年
基金
美国国家科学基金会;
关键词
deep learning; reservoir computing; echo state network; memristor crossbar; MIMO-OFDM; symbol detection; SYSTEMS; 5G;
D O I
10.1145/3400302.3415722
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The Reservoir Computing, a neural computing framework suited for temporal information processing, utilizes a dynamic reservoir layer for high-dimensional encoding, enhancing the separability of the network. In this paper, we exploit a Deep Learning (DL)-based detection strategy for Multiple-input, Multiple-output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) symbol detection. To be specific, we introduce a Deep Echo State Network (DESN), a unique hierarchical processing structure with multiple time intervals, to enhance the memory capacity and accelerate the detection efficiency. The resulting hardware prototype with the hybrid memristor-CMOS co-design provides the in-memory computing and parallel processing capabilities, significantly reducing the hardware and power overhead. With the standard 180nm CMOS process and memristive synapses, the introduced DESN consumes merely 105mW of power consumption, exhibiting 16.7% power reduction compared to shallow ESN designs even with more dynamic layers and associated neurons. Furthermore, numerical evaluations demonstrate advantages of the DESN over state-of-the-art detection techniques in the literate for MIMO-OFDM systems even with a very limited training set, yielding a 47.8% improvement against conventional symbol detection techniques.
引用
收藏
页数:7
相关论文
共 27 条
  • [1] Closest point search in lattices
    Agrell, E
    Eriksson, T
    Vardy, A
    Zeger, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) : 2201 - 2214
  • [2] [Anonymous], 2019, 38211 3GPP
  • [3] [Anonymous], 1992, INTRO ARTIFICIAL NEU
  • [4] Moving Toward Intelligence: Detecting Symbols on 5G Systems Through Deep Echo State Network
    Bai, Kangjun
    Yi, Yang
    Zhou, Zhou
    Jere, Shashank
    Liu, Lingjia
    [J]. IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2020, 10 (02) : 253 - 263
  • [5] A Training-Efficient Hybrid-Structured Deep Neural Network With Reconfigurable Memristive Synapses
    Bai, Kangjun
    An, Qiyuan
    Liu, Lingjia
    Yi, Yang
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (01) : 62 - 75
  • [6] Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch
    Choi, Byung Joon
    Torrezan, Antonio C.
    Norris, Kate J.
    Miao, Feng
    Strachan, John Paul
    Zhang, Min-Xian
    Ohlberg, Douglas A. A.
    Kobayashi, Nobuhiko P.
    Yang, J. Joshua
    Williams, R. Stanley
    [J]. NANO LETTERS, 2013, 13 (07) : 3213 - 3217
  • [7] Enyinna Nwankpa C., 2018, ARXIV
  • [8] Hassan AM, 2017, IEEE IJCNN, P2171, DOI 10.1109/IJCNN.2017.7966118
  • [9] Hu M, 2012, DES AUT CON, P498
  • [10] Jaeger H., 2007, Scholarpedia, V2, P2330, DOI DOI 10.4249/SCHOLARPEDIA.2330