Virtual Neuromuscular Control for Robotic Ankle Exoskeleton Standing Balance

被引:5
|
作者
Yin, Kaiyang [1 ]
Jin, Yantao [1 ]
Du, Haojie [1 ]
Xue, Yaxu [1 ]
Li, Pengfei [1 ]
Ma, Zhengsen [1 ]
机构
[1] Pingdingshan Univ, Sch Elect & Mech Engn, Pingdingshan 467036, Peoples R China
关键词
ankle exoskeleton; virtual neuromuscular model; muscle activation; standing balance; INFORMATION AGGREGATION; ASSISTANCE;
D O I
10.3390/machines10070572
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The exoskeleton is often regarded as a tool for rehabilitation and assistance of human movement. The control schemes were conventionally implemented by developing accurate physical and kinematic models, which often lack robustness to external variational disturbing forces. This paper presents a virtual neuromuscular control for robotic ankle exoskeleton standing balance. The robustness of the proposed method was improved by applying a specific virtual neuromuscular model to estimate the desired ankle torques for ankle exoskeleton standing balance control. In specialty, the proposed control method has two key components, including musculoskeletal mechanics and neural control. A simple version of the ankle exoskeleton was designed, and three sets of comparative experiments were carried out. The experimentation results demonstrated that the proposed virtual neuromuscular control could effectively reduce the wearer's lower limb muscle activation, and improve the robustness of the different external disturbances.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Effects of Exoskeleton Assistance at the Ankle on Sensory Integration During Standing Balance
    Canete, Santiago
    Wilson, Elizabeth B.
    Wright, W. Geoffrey
    Jacobs, Daniel A.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 4428 - 4438
  • [2] Mechanism Design and Motion Control of a Parallel Ankle Joint for Rehabilitation Robotic Exoskeleton
    Fan, Yuanjie
    Yin, Yuehong
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 2527 - 2532
  • [3] Optimization of ankle exoskeleton control parameters for human upright standing push-recovery
    Pang M.
    Zhan J.
    Tang B.
    Xiang K.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (02): : 95 - 101
  • [4] Ankle Positive Power Inspired Adaptive Ankle Exoskeleton Control
    Zhuang, Wenbing
    Du, Hao
    Zhang, Yuanwen
    Huang, Yuchuan
    Leng, Yuquan
    Fu, Chenglong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT X, 2025, 15210 : 293 - 303
  • [5] Effects of a powered ankle-foot orthosis on perturbed standing balance
    Emmens, Amber R.
    van Asseldonk, Edwin H. F.
    van der Kooij, Herman
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2018, 15
  • [6] Neuromuscular control of ankle and hip during performance of the star excursion balance test in subjects with and without chronic ankle instability
    Jaber, Hatem
    Lohman, Everett
    Daher, Noha
    Bains, Gurinder
    Nagaraj, Abhay
    Mayekar, Prajakta
    Shanbhag, Manali
    Alameri, Mansoor
    PLOS ONE, 2018, 13 (08):
  • [7] Control of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury
    Musa L. Audu
    Brooke M. Odle
    Ronald J. Triolo
    Medical & Biological Engineering & Computing, 2018, 56 : 317 - 330
  • [8] Control of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury
    Audu, Musa L.
    Odle, Brooke M.
    Triolo, Ronald J.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (02) : 317 - 330
  • [9] A Method to Control Ankle Exoskeleton with Surface Electromyography Signals
    Zhang, Zhen
    Jiang, Jiaxin
    Peng, Liling
    Fan, Hongchao
    INTELLIGENT ROBOTICS AND APPLICATIONS, PT II, 2010, 6425 : 390 - 397
  • [10] Sex Differences in Human Ankle Stiffness During Standing Balance
    Adjei, Ermyntrude
    Nalam, Varun
    Lee, Hyunglae
    FRONTIERS IN SPORTS AND ACTIVE LIVING, 2020, 2