Bifurcation of periodic solutions of delay differential equation with two delays

被引:6
作者
Bi, P [1 ]
Han, M [1 ]
Wu, YH [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solution; delay; bifurcation;
D O I
10.1016/S0022-247X(03)00353-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop Kaplan-Yorke's method and consider the existence of periodic solutions for delay differential equations with two delays. Especially, we study Hopf and saddle-node bifurcations of periodic solutions for the equation with parameters, and give conditions under which the bifurcations occur. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 563
页数:16
相关论文
共 11 条
[1]  
[Anonymous], PERIODIC SOLUTION DY
[2]  
Cima A., 2001, ANN DIFFER EQU, V17, P205
[3]   An explicit expression of the first Liapunov and period constants with applications [J].
Gasull, A ;
Guillamon, A ;
Manosa, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :190-212
[4]  
GE W, 1995, J SYSTEMS SCI MATH S, V15, P83
[5]  
Han M., 1995, LECT NOTES PURE APPL, V176, P73
[6]  
HAN M, IN PRESS J DIFFERENT
[7]   ORDINARY DIFFERENTIAL EQUATIONS WHICH YIELD PERIODIC-SOLUTIONS OF DIFFERENTIAL DELAY EQUATIONS [J].
KAPLAN, JL ;
YORKE, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (02) :317-324
[8]   NONLINEAR DIFFERENTIAL DELAY EQUATION X'(T) =-F(X(T), X(T-1)) [J].
KAPLAN, JL ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 23 (02) :293-314
[9]  
LI S, 1985, THEORY FUNCTIONAL DI
[10]  
LIU ZR, 1996, PERIODIC SOLUTIONS H