THE MEAN-SQUARE DICHOTOMY SPECTRUM AND A BIFURCATION TO A MEAN-SQUARE ATTRACTOR

被引:7
作者
Doan, Thai Son [1 ,3 ]
Rasmussen, Martin [1 ]
Kloeden, Peter E. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Vietnam Acad Sci & Technol, Inst Math, Hanoi, Vietnam
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2015年 / 20卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
Dichotomy spectrum; mean-square random dynamical system; mean-square random attractor; bifurcation;
D O I
10.3934/dcdsb.2015.20.875
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dichotomy spectrum is introduced for linear mean-square random dynamical systems, and it is shown that for finite-dimensional mean-field stochastic differential equations, the dichotomy spectrum consists of finitely many compact intervals. It is then demonstrated that a change in the sign of the dichotomy spectrum is associated with a bifurcation from a trivial to a non-trivial mean-square random attractor.
引用
收藏
页码:875 / 887
页数:13
相关论文
共 13 条
[1]  
[Anonymous], 1992, Applications of mathematics
[2]  
[Anonymous], 2002, STOCH DYNAM
[3]  
Arnold L, 1998, Random dynamical systems
[4]  
Ateiwi A. M., 2002, MISKOLC MATH NOTES, V3, P3
[5]  
Callaway M., DICHOTOMY SPEC UNPUB
[6]  
Khasminskii R, 2012, STOCH MOD APPL PROBA, V66, P1, DOI 10.1007/978-3-642-23280-0
[7]  
Kloeden P, 2011, Mathematical surveys and monographs, V176
[8]   Mean-square random dynamical systems [J].
Kloeden, Peter E. ;
Lorenz, Thomas .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) :1422-1438
[9]   Negatively Invariant Sets and Entire Trajectories of Set-Valued Dynamical Systems [J].
Kloeden, Peter E. ;
Marin-Rubio, Pedro .
SET-VALUED AND VARIATIONAL ANALYSIS, 2011, 19 (01) :43-57
[10]   Stochastic Differential Equations with Nonlocal Sample Dependence [J].
Kloeden, Peter E. ;
Lorenz, Thomas .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (06) :937-945